1. bookVolume 18 (2018): Issue 4 (August 2018)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Application of conditional averaging to time delay estimation of random signals

Published Online: 14 Aug 2018
Volume & Issue: Volume 18 (2018) - Issue 4 (August 2018)
Page range: 130 - 137
Received: 02 Feb 2018
Accepted: 16 Jul 2018
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

The article presents the possibilities of using the function of conditional average value of a delayed signal (CAV) and the function of conditional average value of a delayed signal absolute value (CAAV) to determine the time delay estimation (TDE) of random signals. For discrete CAV and CAAV estimators, the standard uncertainties of the estimation of function values at extreme points and the standard uncertainties of the TDE were given and compared with the corresponding uncertainties for the direct discrete cross-correlation function (CCF) estimator. It was found that the standard uncertainty of TDE for CAV is lower than for CCF independent of signal-to-noise ratio (SNR) for parameter values of α ≥ 2 and M/N ≥ 0.25 (where: α - relative threshold value, M/N - quotient of number of averaging and number of samples). The standard uncertainty of TDE for CAAV will be lower than for CCF for SNR values greater than 0.35 (for N/M = 1).

Keywords

[1] Bendat, J.S., Piersol, A.G. (2010). Random Data: Analysis and Measurement Procedures (Fourth Edition). Wiley.Search in Google Scholar

[2] Assous, S., Linnett, L. (2012). High resolution time delay estimation using sliding discrete Fourier transform. Digital Signal Processing, 22, 820-827.10.1016/j.dsp.2012.05.001Search in Google Scholar

[3] Waschburger, R., Kawakami, R., Galvao, H. (2013). Time delay estimation in discrete-time state-space models. Signal Processing, 93, 904-912.10.1016/j.sigpro.2012.10.017Search in Google Scholar

[4] Jacovitti, G., Scarano, G. (1993). Discrete time technique for time delay estimation. IEEE Transactions on Signal Processing, 41 (2), 525-533.10.1109/78.193195Search in Google Scholar

[5] Chen, J., Benesty, J., Huang, Y. (2006). Time delay estimation in room acoustic environments: An overview. EURASIP Journal on Advances in Signal Processing, 2006, 026503.10.1155/ASP/2006/26503Search in Google Scholar

[6] Hanus, R., Zych, M., Petryka, L., Świsulski, D. (2014). Time delay estimation in two-phase flow investigation using the γ-ray attenuation technique. Mathematical Problems in Engineering, 2014, 475735.10.1155/2014/475735Search in Google Scholar

[7] Chen, J., Huang, Y., Benesty, J. (2004). Time delay estimation. In Audio Signal Processing for Next- Generation Multimedia Communication Systems. Springer, 197-227.10.1007/1-4020-7769-6_8Search in Google Scholar

[8] Blok, E. (2002). Classification and evaluation of discrete subsample time delay estimation algorithms. In 14th International Conference on Microwaves, Radar and Wireless Communications (MIKON-2002), May 20-22, 2002. IEEE, 764-767.10.1109/MIKON.2002.1017953Search in Google Scholar

[9] So, H.C. (2001). On time delay estimation using an FIR filter. Signal Processing, 81, 1777-1782.10.1016/S0165-1684(01)00098-6Search in Google Scholar

[10] Zych, M., Hanus, R., Vlasak, P., Jaszczur, M., Petryka, L. (2017). Radiometric methods in the measurement of particle-laden flows. Powder Technology, 318, 491-500.10.1016/j.powtec.2017.06.019Search in Google Scholar

[11] Mosorov, V. (2008). Flow pattern tracing for mass flow rate measurement in pneumatic conveying using twin plane electrical capacitance tomography. Particle & Particle Systems Characterization, 25 (3), 259-265.10.1002/ppsc.200700034Search in Google Scholar

[12] Zhang, L., Wu, X. (2006). On the application of cross correlation function to subsample discrete time delay estimation. Digital Signal Processing, 16, 682-694.10.1016/j.dsp.2006.08.009Search in Google Scholar

[13] Beck, M.S., Pląskowski, A. (1987). Cross-Correlation Flowmeters. CRC Press.Search in Google Scholar

[14] Mosorov, V. (2006). Phase spectrum method for time delay estimation using twin-plane electrical capacitance tomography. Electronics Letters, 42 (11), 630-632.10.1049/el:20060338Search in Google Scholar

[15] Hanus, R., Zych, M., Petryka, L., Mosorov, V., Hanus, P. (2015). Application of the phase method in radioisotope measurements of the liquid - solid particles flow in the vertical pipeline. EPJ Web of Conferences, 92, 02020.10.1051/epjconf/20159202020Search in Google Scholar

[16] Hanus, R. (2015). Application of the Hilbert Transform to measurements of liquid-gas flow using gamma ray densitometry. International Journal of Multiphase Flow, 72, 210-217.10.1016/j.ijmultiphaseflow.2015.02.002Search in Google Scholar

[17] Shors, S.M., Sahakian, A.V., Sih, H.J., Swiryn, S. (1996). A method for determining high-resolution activation time delays in unipolar cardiac mapping. IEEE Transactions on Biomedical Engineering, 43 (12), 1192-1196.10.1109/10.5443439214838Search in Google Scholar

[18] Hanus, R. (2001). Accuracy comparison of some statistic methods of time delay measurements. Systems Analysis Modelling Simulation, 40 (2), 239-244.Search in Google Scholar

[19] Kowalczyk, A., Szlachta, A. (2010). The application of conditional averaging of signals to obtain the transportation delay. Przegląd Elektrotechniczny, 86(1), 225-228. (in Polish)Search in Google Scholar

[20] Kowalczyk, A., Hanus, R., Szlachta, A. (2011). Time delay estimation of stochastic signals using conditional averaging. In 8th International Conference on Measurement (Measurement 2011), April 27-30, 2011. Bratislava, Slovakia: Institute of Measurement Science SAS, 32-37.Search in Google Scholar

[21] Kowalczyk, A., Szlachta, A., Hanus, R., Chorzępa, R. (2017). Estimation of conditional expected value for exponentially autocorrelated data. Metrology and Measurement Systems, 24 (1), 69-78.10.1515/mms-2017-0005Search in Google Scholar

[22] Hanus, R. (2010). Standard uncertainty comparison of time delay estimation using cross-correlation function and the function of conditional average value of the absolute value of delayed signal. Przegląd Elektrotechniczny, 86 (6), 232-235. (in Polish)Search in Google Scholar

[23] Kowalczyk, A., Hanus, R., Szlachta, A. (2011). Investigation of the statistical method of time delay estimation based on conditional averaging of delayed signal. Metrology and Measurement Systems, 18 (2), 335-342.10.2478/v10178-011-0015-3Search in Google Scholar

[24] Szlachta, A., Hanus, R., Kowalczyk, A. (2011). Virtual instrument for the estimation of the time delay using conditional averaging of random signals. In International Workshop on ADC Modelling, Testing and Data Converter Analysis and Design and IEEE 2011 ADC Forum, June 30 - July 1, 2011. IMEKO, 81-86.Search in Google Scholar

[25] Kowalczyk, A., Hanus, R., Szlachta, A. (2016). Time delay measurement method using conditional averaging of the delayed signal module. Przegląd Elektrotechniczny, 92 (9), 279-282.10.15199/48.2016.09.66Search in Google Scholar

[26] Hanus, R., Szlachta, A., Kowalczyk, A., Petryka, L., Zych, M. (2012). Radioisotope measurement of twophase flow in pipeline using conditional averaging of signal. In 16th IEEE Mediterranean Electrotechnical Conference (MELECON 2012), March 25-28, 2012. IEEE, 144-147.10.1109/MELCON.2012.6196400Search in Google Scholar

[27] Hanus, R., Zych, M., Kowalczyk, A., Petryka, L. (2015). Velocity measurements of the liquid-gas flow using gamma absorption and modified conditional averaging. EPJ Web of Conferences, 92, 02021.10.1051/epjconf/20159202021Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo