1. bookVolume 16 (2016): Issue 6 (December 2016)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Measurement of Transient Permeability of Sp2/0 Myeloma Cells: Flow Cytometric Study

Published Online: 13 Dec 2016
Volume & Issue: Volume 16 (2016) - Issue 6 (December 2016)
Page range: 300 - 304
Received: 09 Sep 2016
Accepted: 25 Nov 2016
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

Electroporation is an electric field induced phenomenon occurring when the permeability of the cell membrane is increased due to the excess of critical transmembrane potential. Fluorescent dye assays are frequently used for evaluation of the permeabilization rate, however, the protocols vary, which negatively affects the repeatability of the results. In this work we have designed experiments to investigate the protocols and threshold concentrations of the Propidium Iodide (PI) and YO-PRO-1 (YP) fluorescent dyes for evaluation of mammalian cell permeabilization induced by electroporation. The Sp2/0 mouse myeloma cells were used and the bursts of 100 μs × 8 electrical pulses of 0.8-2 kV/cm were applied. It has been shown that the dye concentration has an influence on the detectable permeabilization, and the concentrations below 30 μM for PI and 1 μM for YP should be avoided for measurement of electropermeabilization efficacy due to unreliable fluorescence signals. Further, based on the experimental data, the permeabilization curve for the Sp2/0 myeloma cells in the 0.8-2 kV/cm range has been presented.

Keywords

[1] Gehl, J. (2003). Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiologica Scandinavica, 177 (4), 437-447.10.1046/j.1365-201X.2003.01093.x12648161Search in Google Scholar

[2] Kotnik, T., Kramar, P., Pucihar, G., Miklavcic, D., Tarek, M. (2012). Cell membrane electroporation - Part 1: The phenomenon. IEEE Electrical Insulation Magazine, 28 (5), 14-23.10.1109/MEI.2012.6268438Search in Google Scholar

[3] Yarmush, M.L., Golberg, A., Serša, G., Kotnik, T., Miklavčič, D. (2014). Electroporation-based technologies for medicine: Principles, applications, and challenges. Annual Review of Biomedical Engineering, 16 (1), 295-320.10.1146/annurev-bioeng-071813-10462224905876Search in Google Scholar

[4] Subhra, T., Wang, P., Gang, F. (2013). Electroporation based drug delivery and its applications. In Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies. InTech, 61-98.10.5772/55369Search in Google Scholar

[5] Haberl, S., Miklavcic, D., Sersa, G., Frey, W., Rubinsky, B. (2013). Cell membrane electroporation - Part 2: The applications. IEEE Electrical Insulation Magazine, 29 (1), 29-37.10.1109/MEI.2013.6410537Search in Google Scholar

[6] Jiang, C., Davalos, R.V., Bischof, J.C. (2015). A review of basic to clinical studies of irreversible electroporation therapy. IEEE Transactions on Biomedical Engineering, 62 (1), 4-20.10.1109/TBME.2014.236754325389236Search in Google Scholar

[7] Teissié, J., Golzio, M. (2014). Electropermeabilization of the cell membrane. In Encyclopedia of Applied Electrochemistry. Springer, 773-782.10.1007/978-1-4419-6996-5_265Search in Google Scholar

[8] Zou, Y., Wang, C., Peng, R., Wang, L., Hu, X. (2015). Theoretical analyses of cellular transmembrane voltage in suspensions induced by high-frequency fields. Bioelectrochemistry, 102, 64-72.10.1016/j.bioelechem.2014.12.00225528063Search in Google Scholar

[9] Spugnini, E.P., Melillo, A., Quagliuolo, L., Boccellino, M., Vincenzi, B., Pasquali, P. et al. (2014). Definition of novel electrochemotherapy parameters and validation of their in vitro and in vivo effectiveness. Journal of Cellular Physiology, 229 (9), 1177-1181.10.1002/jcp.2454824403005Search in Google Scholar

[10] Blumrosen, G., Abazari, A., Golberg, A., Tonner, M., Yarmush, M.L. (2014). Efficient procedure and methods to determine critical electroporation parameters. In 2014 IEEE 27th International Symposium on Computer-Based Medical Systems. IEEE, 314-318.10.1109/CBMS.2014.18Search in Google Scholar

[11] Pucihar, G., Krmelj, J., Reberšek, M., Napotnik, T.B., Miklavčič, D., Reberšek, M. et al. (2011). Equivalent pulse parameters for electroporation. IEEE Transactions on Biomedical Engineering, 58 (11), 3279-3288.10.1109/TBME.2011.2167232Search in Google Scholar

[12] Pucihar, G., Kotnik, T., Kandušer, M., Miklavčič, D. (2001). The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry, 54 (2), 107-15.10.1016/S1567-5394(01)00117-7Search in Google Scholar

[13] Rols, M.P., Teissié, J. (1990). Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophysical Journal, 58 (5), 1089-1098.Search in Google Scholar

[14] Vernier, P.T., Sun, Y., Gundersen, M.A., Vernier, P., Sun, Y., Marcu, L. et al. (2006). Nanoelectropulsedriven membrane perturbation and small molecule permeabilization. BMC Cell Biology, 7 (1), 37.10.1186/1471-2121-7-37Search in Google Scholar

[15] Napotnik, T.B., Wu, Y.-H., Gundersen, M.A., Miklavčič, D., Vernier, P.T. (2012). Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics, 33 (3), 257-264.10.1002/bem.20707Search in Google Scholar

[16] Djuzenova, C.S., Zimmermann, U., Frank, H., Sukhorukov, V.L., Richter, E., Fuhr, G. (1996). Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochimica et Biophysica Acta - Biomembranes, 1284 (2), 143-152.10.1016/S0005-2736(96)00119-8Search in Google Scholar

[17] Sadik, M.M., Li, J., Shan, J.W., Shreiber, D.I., Lin, H. (2013). Quantification of propidium iodide delivery using millisecond electric pulses: Experiments. Biochimica et Biophysica Acta - Biomembranes, 1828 (4), 1322-1328.10.1016/j.bbamem.2013.01.00223313458Search in Google Scholar

[18] Demiryurek, Y., Nickaeen, M., Zheng, M., Yu, M., Zahn, J.D., Shreiber, D.I. et al. (2015). Transport, resealing, and re-poration dynamics of two-pulse electroporation-mediated molecular delivery. Biochimica et Biophysica Acta - Biomembranes, 1848 (8), 1706-1714.10.1016/j.bbamem.2015.04.00725911207Search in Google Scholar

[19] Gowrishankar, T.R., Pliquett, U., Lee, R.C. (1999). Dynamics of membrane sealing in transient electropermeabilization of skeletal muscle membranes. Annals of the New York Academy of Sciences, 888 195-210.10.1111/j.1749-6632.1999.tb07957.x10842634Search in Google Scholar

[20] Saulis, G. (2010). Kinetics of pore formation and disappearance in the cell during electroporation. In Advanced Electroporation Techniques in Biology and Medicine. CRC Press, 213-237.Search in Google Scholar

[21] Lamberti, P., Romeo, S., Sannino, A., Zeni, L., Zeni, O. (2015). The role of pulse repetition rate in nsPEFinduced electroporation: A biological and numerical investigation. IEEE Transactions on Biomedical Engineering, 62 (9), 2234-2243.10.1109/TBME.2015.241981325850084Search in Google Scholar

[22] Kulbacka, J., Pucek, A., Wilk, K.A., Dubińska- Magiera, M., Rossowska, J., Kulbacki, M. et al. (2016). The effect of millisecond pulsed electric fields (msPEF) on intracellular drug transport with negatively charged large nanocarriers made of solid lipid nanoparticles (SLN): In vitro study. The Journal of Membrane Biology, 249 (5), 645-661.10.1007/s00232-016-9906-1504584527173678Search in Google Scholar

[23] Ford, W.E., Ren, W., Blackmore, P.F., Schoenbach, K.H., Beebe, S.J. (2010). Nanosecond pulsed electric fields stimulate apoptosis without release of proapoptotic factors from mitochondria in B16f10 melanoma. Archives of Biochemistry and Biophysics, 497 (1-2), 82-89.10.1016/j.abb.2010.03.008Search in Google Scholar

[24] Wezgowiec, J., Derylo, M.B., Teissie, J., Orio, J., Rols, M.-P., Kulbacka, J. et al. (2013). Electric fieldassisted delivery of photofrin to human breast carcinoma cells. The Journal of Membrane Biology, 246 (10), 725-735.10.1007/s00232-013-9533-zSearch in Google Scholar

[25] Novickij, V., Grainys, A., Butkus, P., Tolvaišienė, S., Švedienė, J., Paškevičius, A., Novickij, J. (2016). High-frequency submicrosecond electroporator. Biotechnology and Biotechnological Equipment, 30 (3), 607-613.10.1080/13102818.2016.1150792Search in Google Scholar

[26] Michie, J., Janssens, D., Cilliers, J., Smit, B.J., Böhm, L. (2000). Assessment of electroporation by flow cytometry. Cytometry, 41, 96-101.10.1002/1097-0320(20001001)41:2<96::AID-CYTO3>3.0.CO;2-FSearch in Google Scholar

[27] Bier, M., Hammer, S.M., Canaday, D.J., Lee, R.C. (1999). Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells. Bioelectromagnetics, 20 (3), 194-201.10.1002/(SICI)1521-186X(1999)20:3<194::AID-BEM6>3.0.CO;2-0Search in Google Scholar

[28] Lazniewska, J., Janaszewska, A., Miłowska, K., Caminade, A.M., Mignani, S., Katir, N., El Kadib, A., Bryszewska, M., Majoral, J.P., Gabryelak, T., Klajnert-Maculewicz, B. (2013). Promising lowtoxicity of viologen-phosphorus dendrimers against embryonic mouse hippocampal cells. Molecules, 18 (10), 12222-12240.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo