1. bookVolume 16 (2016): Issue 2 (April 2016)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Simple Oscillator with Enlarged Tunability Range Based on ECCII and VGA Utilizing Commercially Available Analog Multiplier

Published Online: 06 May 2016
Volume & Issue: Volume 16 (2016) - Issue 2 (April 2016)
Page range: 35 - 41
Received: 03 Sep 2015
Accepted: 22 Mar 2016
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

This work presents an example of implementation of electronically controllable features to an originally unsuitable circuit structure of oscillator. Basic structure does not allow any electronic control and has mutually dependent condition of oscillation (CO) and frequency of oscillation (FO) if only values of passive elements are considered as the only way of control. Utilization of electronically controllable current conveyor of second generation (ECCII) brings control of CO independent of FO. Additional application of voltage amplifier with variable gain in both polarities (voltage-mode multiplier) to feedback loop allows also important enlargement of the range of the independent FO control. Moreover, our proposal was tested and confirmed experimentally with commercially available active elements (“Diamond transistor”, current-mode multiplier, voltage-mode multiplier) in working range of tens of MHz.

Keywords

[1] Soliman, A.M. (1998). Novel oscillators using current and voltage followers. Journal of the Franklin Institute, 335 (6), 997-1007.10.1016/S0016-0032(97)00044-6Search in Google Scholar

[2] Keskin, A.U., Aydin, C., Hancioglu, E., Acar, C. (2006). Quadrature oscillator using current differencing buffered amplifiers (CDBA). Frequenz, 60 (6), 21-23.10.1515/FREQ.2006.60.3-4.57Search in Google Scholar

[3] Sotner, R., Sevcik, B., Slezak, J., Petrzela, J., Brancik, L. (2011). Sinusoidal oscillator based on adjustable current amplifier and diamond transistors with buffers. Przeglad Elektrotechniczny, 87 (1), 266-270.Search in Google Scholar

[4] Sotner, R., Hrubos, Z., Slezak, J., Dostal, T. (2010). Simply adjustable sinusoidal oscillator based on negative three-port current conveyors. Radioengineering, 19 (3), 446-453.Search in Google Scholar

[5] Sotner, R., Jerabek, J., Petrzela, J., Dostal, T., Vrba, K. (2009). Electronically tunable simple oscillator based on single-output and multiple output transconductor. IEICE Electronics Express, 6 (20), 1476-1482.10.1587/elex.6.1476Search in Google Scholar

[6] Herencsar, N., Minaei, S., Koton, J., Yuce, E., Vrba, K. (2013). New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog Integrated Circuits and Signal Processing, 74 (1), 141-154.10.1007/s10470-012-9936-2Search in Google Scholar

[7] Jaikla, W., Siripruchyanun, M., Bajer, J., Biolek, D. (2008). A simple current-mode quadrature oscillator using single CDTA. Radioengineering, 17 (4), 33-40.Search in Google Scholar

[8] Pandey, N., Paul, S.K. (2011). Single CDTA-based current mode all-pass filter and its applications. Journal of Electrical and Computer Engineering, 2011, art. ID 897631.10.1155/2011/897631Search in Google Scholar

[9] Songkla, S.N., Jaikla, W. (2012). Realization of electronically tunable current-mode first-order allpass filter and its application. International Journal of Electronics and Electrical Engineering, 2012 (6), 40-43.Search in Google Scholar

[10] Keawon, R., Jaikla, W. (2011) A resistor-less currentmode quadrature sinusoidal oscillator employing single CCCDTA and grounded capacitors. Przeglad Elektrotechniczny, 87 (8), 138-141.Search in Google Scholar

[11] Senani, R. (1989). New electronically tunable OTA-C sinusoidal oscillator. Electronics Letters, 25 (4), 286-287.10.1049/el:19890199Search in Google Scholar

[12] Li, Y. (2010). Electronically tunable current-mode quadrature oscillator using single MCDTA. Radioengineering, 19 (4), 667-671.Search in Google Scholar

[13] Sotner, R., Hrubos, Z., Herencsar, N., Jerabek, J., Dostal, T., Vrba, K. (2014). Precise electronically adjustable oscillator suitable for quadrature signal generation employing active elements with current and voltage gain control. Circuits Systems and Signal Processing, 33 (1), 1-35.10.1007/s00034-013-9623-2Search in Google Scholar

[14] Linares-Barrranco, B., Rodriguez-Vazquez, A., Sanchez-Sinencio, E., Huertas, J.L. (1991). CMOS OTA-C high-frequency sinusoidal oscillators. IEEE Journal of Solid-State Circuits, 26 (2), 160-165.10.1109/4.68133Search in Google Scholar

[15] Prommee, P., Dejhan, K. (2002). An integrable electronic-controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifier. International Journal of Electronics, 89 (5), 365-379.10.1080/713810385Search in Google Scholar

[16] Horng, J-W. (2009). Current-mode third-order quadrature oscillator using CDTAs. Active and Passive Electronic Components, 2009, art. ID 789171.10.1155/2009/789171Search in Google Scholar

[17] Chatuverdi, B., Maheshwari, S. (2013). Third-order quadrature oscillators circuit with current and voltage outputs. ISRN Electronics, 2013, art. ID 385062.Search in Google Scholar

[18] Surakampontorn, W., Thitimajshima, W. (1988). Integrable electronically tunable current conveyors. IEE Proceedings-G, 135 (2), 71-77.10.1049/ip-g-1.1988.0010Search in Google Scholar

[19] Fabre, A., Mimeche, N. (1994). Class A/AB second generation current conveyor with controlled current gain. Electronics Letters, 30 (16), 1267-1268.10.1049/el:19940878Search in Google Scholar

[20] Minaei, S., Sayin, O.K., Kuntman, H. (2006). A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Transaction on Circuits and Systems - I, 53 (7), 1448-1457.10.1109/TCSI.2006.875184Search in Google Scholar

[21] Sedra, A., Smith, K.C. (1970). A second generation current conveyor and its applications. IEEE Transaction on Circuit Theory, CT-17 (2), 132-134.10.1109/TCT.1970.1083067Search in Google Scholar

[22] Svoboda, J.A., McGory, L., Webb, S. (1991). Applications of a commercially available current conveyor. International Journal of Electronics, 70 (1), 159-164.10.1080/00207219108921266Search in Google Scholar

[23] Texas Instruments. VCA810: High gain adjust range, wideband and variable gain amplifier. http://www.ti.com/lit/ds/symlink/vca810.pdf.Search in Google Scholar

[24] Texas Instruments. LMH6505: Wideband, low power, linear-in-dB, variable gain amplifier. http://www.ti.com/lit/ds/symlink/lmh6505.pdf.Search in Google Scholar

[25] Analog Devices. AD835: 250 MHz, voltage output 4- quadrant multiplier. http://www.analog.com/static/imported-files/data_sheets/AD835.pdf.Search in Google Scholar

[26] Sotner, R., Jerabek, J., Petrzela, J., Herencsar, N., Prokop, R., Vrba, K. (2014). Second-order simple multiphase oscillator using Z-copy controlled-gain voltage differencing current conveyor. Elektronika ir Elektrotechnika, 20 (9), 13-18.10.5755/j01.eee.20.9.8709Search in Google Scholar

[27] Sotner, R., Jerabek, J., Herencsar, N., Horng, J-W., Vrba, K. (2015). Electronically linearly voltage controlled second-order harmonic oscillators with multiples of pi/4 phase shifts. In 38th International Conference on Telecommunications and Signal Processing (TSP), 9-11 July 2015. IEEE, 708-712.Search in Google Scholar

[28] Intersil. EL2082: Current-mode multiplier. http://www.intersil.com/data/fn/fn7152.pdf.Search in Google Scholar

[29] Texas Instruments. OPA860: Wide-bandwidth, operational transconductance amplifier (OTA) and buffer. http://www.ti.com/lit/ds/symlink/opa860.pdf.Search in Google Scholar

[30] Biolek, D., Senani, R., Biolkova, V., Kolka, Z. (2008). Active elements for analog signal processing: Classification, review, and new proposal. Radioengineering, 17 (4), 15-32.Search in Google Scholar

[31] Sotner, R., Kartci, A., Jerabek, J., Herencsar, N., Dostal, T., Vrba, K. (2012). An additional approach to model current followers and amplifiers with electronically controllable parameters from commercially available ICs. Measurement Science Review, 12 (6), 255-265.10.2478/v10048-012-0035-4Search in Google Scholar

[32] Odon, A. (2010). Modelling and simulation of the pyroelectric detector using MATLAB/Simulink. Measurement Science Review, 10 (6), 195-199.10.2478/v10048-010-0033-3Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo