Cite

[1] Kamyshev, A.V., Nikitina, N.E., Smirnov, V.A. (2010). Measurement of the residual stresses in the treads of railway wheels by the acoustoelasticity method. Russian Journal of Nondestructive Testing, 46 (3), 189-193.10.1134/S106183091003006XSearch in Google Scholar

[2] Murav’ev, V. V., Volkova, L. V. (2013). Evaluation of the interference value for the treads of locomotive wheels by the acoustic elasticity method. Russian Journal of Nondestructive Testing, 49 (9), 524-529.10.1134/S1061830913090064Search in Google Scholar

[3] Croccolo, D., De Agostinis, M., Ceschini, L., Morri, A., Marconi A. (2013). Interference fit effect on improving fatigue life of a holed single plate. Fatigue & Fracture of Engineering Materials & Structures, 36 (7), 689-698.10.1111/ffe.12039Search in Google Scholar

[4] Mädler, K., Geburtig, T., Detlev U. (2016). An experimental approach to determining the residual lifetimes of wheelset axles on a full-scale wheel-rail roller test rig. International Journal of Fatigue, 86, 58-63.10.1016/j.ijfatigue.2015.06.016Search in Google Scholar

[5] Motova, E.A., Nikitina, N.E., Tarasenko, Yu. P. (2013). Concerning the Possibility of Examining Compressor Blades according to Attenuation and Speed of Ultrasound. Journal of Machinery Manufacture and Reliability, 42 (4), 335-340.10.3103/S1052618813040109Search in Google Scholar

[6] Kostin V.N., Vasilenko O.N., Filatenkov D.Yu., Chekasina Yu.A., Serbin E.D. (2015). Magnetic and magnetoacoustic testing parameters of the stressed-strained state of carbon steels that were subjected to a cold plastic deformation and annealing. Russian Journal of Nondestructive Testing, 51 (10), 624-632.10.1134/S1061830915100071Search in Google Scholar

[7] Filinov V.V., Kuznetsov A.N., Arakelov P.G. (2017). Monitoring stressed state of pipelines by magnetic parameters of metal. Russian Journal of Nondestructive Testing, 53 (1), 51-61.10.1134/S1061830917010065Search in Google Scholar

[8] Wentao Song, Chunguang Xu, Qinxue Pan, Jianfeng Song (2016). Nondestructive testing and characterization of residual stress field using an ultrasonic method. Chinese Journal of Mechanical Engineering, 29 (2), 365-371.10.3901/CJME.2015.1023.126Search in Google Scholar

[9] Yashar Javadi, Seyed Hatef Mosteshary (2015). Evaluation of Welding Residual Stress in a Nickel Alloy Pressure Vessel using the Ultrasonic Stress Measurement Technique. Materials Evaluation, 73 (6), 862-868.Search in Google Scholar

[10] Allen, D.R., Sayers, C.M. (1984). The measurement of residual stress in textured steel using an ultrasonic velocity combinations technique. Ultrasonics, 22 (4), 179-188.10.1016/0041-624X(84)90034-9Search in Google Scholar

[11] Chunguang Xu, Wentao Song, Qinxue Pan, Huanxin Li, Shuai Liu. (2015). Nondestructive Testing Residual Stress Using Ultrasonic Critical Refracted Longitudinal Wave. Physics Procedia, 70, 594-598.10.1016/j.phpro.2015.08.030Search in Google Scholar

[12] Uglov A.L., Khlybov A.A. (2015). On the inspection of the stressed state of anisotropic steel pipelines using the acoustoelasticity method. Russian Journal of Nondestructive Testing, 51 (4), 210-216.10.1134/S1061830915040087Search in Google Scholar

[13] Smirnov A.N., Knyazkov V.L., Abakov N.V., Ozhiganov E.A., Koneva N.A., Popova N.A. (2018) Acoustic evaluation of the stress-strained state of welded carbon steel joints after different modes of heat input. Russian Journal of Nondestructive Testing, 54 (1), 37-43.10.1134/S1061830918010072Search in Google Scholar

[14] Hirao M., Ogi H. Electromagnetic Acoustic Transducers: Noncontacting Ultrasonic Measurements Using EMATs. Tokyo: Springer Japan, 2017. 380 с.10.1007/978-4-431-56036-4Search in Google Scholar

[15] Murav’ev V.V., Volkova L.V., Platunov A.V., Kulikov V.A. (2016). An electromagnetic-acoustic method for studying stress-strain states of rails. Russian Journal of Nondestructive Testing, 52 (7), 370-376.10.1134/S1061830916070044Search in Google Scholar

[16] Murav’ev V.V., Tapkov K.A. (2017). Evaluation of Strain-Stress State of the Rails in the Production. Devices and Methods of Measurements, 8 (3), 236-245.10.21122/2220-9506-2017-8-3-263-270Search in Google Scholar

[17] Murav’ev V.V., Murav’eva O.V., Petrov K.V. (2017). Connection between the properties of 40kh-steel bar stock and the speed of bulk and Rayleigh waves. Russian Journal of Nondestructive Testing, 53 (8), 560-567.10.1134/S1061830917080046Search in Google Scholar

[18] Murav’ev V.V., Volkova L.V., Platunov A.V., Buldakova I.V., Gushchina L.V. (2018) Investigations of the structural and strain-stress state of the rails of current production by the acoustic elasticity method. Bulletin of Kalashnikov ISTU, 21(2), 13-23.10.22213/2413-1172-2018-2-13-23Search in Google Scholar

[19] Murav’ev V.V., Murav’eva O.V., Petrov K.V. (2018) Contactless electromagnetic acoustic techniques of diagnostics and assessment of mechanical properties of steel rolled bars. Materials physics and mechanics, 38 (1), 48-53.Search in Google Scholar

[20] Dovica, M., Busa, J., Palencar, R., Duris, S., Soos, L., Vrba, I., Kelemenova, T., Skovranek, T. (2013). Comparison of methods for analysis of deviations from roundness. Measurement Techniques, 56 (9), 1021-1025.10.1007/s11018-013-0323-xSearch in Google Scholar

[21] Jančárik, V., Harťanský, R., Slížik, J., Mierka, M., Halgoš,J., Hallon,J., Hricko, J. (2019). Autonomous sensor of electromagnetic field. In Review of Scientific Instruments. Vol. 90, Iss. 6 Art. No. 64705.10.1063/1.509018531255044Search in Google Scholar

[22] Hornik, J.; Peslova, F.; Krum, S. (2016) Selection of basic input variables for computational modeling of brake shoes. Procedia Engineering, 136, 300-305.10.1016/j.proeng.2016.01.214Search in Google Scholar

[23] Horník, J., Zuna, P., Málek, J. (2017) Evaluation of changes of mechanical properties of selected Cr-Ni-Mo steels for heavy forgings during long time annealing. Materials Science Forum, 891, 149-154.10.4028/www.scientific.net/MSF.891.149Search in Google Scholar

[24] Slížik, J., Harťanský, R. (2013). Metrology of Electromagnetic Intensity Measurement in Near Field. In Quality Innovation Prosperity. Vol. 17, Iss. 1 (2013), pp. 57-66.10.12776/qip.v17i1.79Search in Google Scholar

[25] Budenkov G.A., Korobeinikova O.V. (2009) Influence of the chemical composition and temperature of metals on the efficiency of electromagnetic-acoustic transformation. Russian Journal of Nondestructive Testing. 45 (4), 252-258.10.1134/S1061830909040056Search in Google Scholar