1. bookVolume 36 (2018): Issue 2 (June 2018)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Substitutional effect of copper on the cation distribution in cobalt chromium ferrites and their structural and magnetic properties

Published Online: 25 Jun 2018
Volume & Issue: Volume 36 (2018) - Issue 2 (June 2018)
Page range: 255 - 263
Received: 11 Jan 2018
Accepted: 07 Feb 2018
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

A series of copper substituted cobalt chromium ferrites, CuxCo1 - xCr0.5Fe1.5O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) has been synthesized, by employing powder metallurgy method. Calcination of the samples has been carried out for 24 hours at 1100 °C. The resultant materials have been investigated by using a variety of techniques, including X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM)), scanning electron microscopy (SEM), and ultraviolet visible spectroscopy (UV-Vis). The XRD patterns confirmed that all compositions had a cubic spinel structure with a single phase and the lattice parameter was found to increase with increasing copper concentration. FT-IR spectroscopy has been used for studying the chemical bonds in the spinel ferrite. Shifting of the bands ν1 and ν2 has been observed. It has been revealed from VSM analysis that saturation magnetization and coercivity decrease with rising the Cu+2 doping. Magnetic properties have been explained on the basis of cation distribution. Scanning electron microscopy (SEM) has been used to study the surface morphology of prepared samples. UV-Vis analysis revealed the optical absorption of the samples. An increase in band gaps has been observed with increasing copper concentration in the sample.

Keywords

[1] Tartag P., Morales M.D., Sabin V.V., J. Appl. Phys., 36 (2003), 182.10.1088/0022-3727/36/13/202Search in Google Scholar

[2] Badar S.D., J. Phys., 78 (2006), 1.Search in Google Scholar

[3] Ross C.A., J. Mater. Res., 31 (2001), 203.10.1146/annurev.matsci.31.1.203Open DOISearch in Google Scholar

[4] Wood R.W., Miles J., Olson T., Ieee T. Magn., 38 (2002), 1711.10.1109/TMAG.2002.1017761Search in Google Scholar

[5] Swant S.R., Patail R.N., J. Appl. Phys., 20 (1982), 353.Search in Google Scholar

[6] Ahmad I., Abbas T., Islam M.U., Maqsood A., J.Ceram. Int., 39 (2013), 6735.10.1016/j.ceramint.2013.02.001Search in Google Scholar

[7] Briceo S., Castillo H.D., Sagredo V., Bramerescamilla W., Silva P., J. Surf. Sci., 263 (2012), 100.10.1016/j.apsusc.2012.09.007Search in Google Scholar

[8] Tailhades P., Villette C., Rousset A., Kulkarni G., Kannan K., Rao C., Lenglet M., J. Solid State Chem., 141 (1998), 56.10.1006/jssc.1998.7914Search in Google Scholar

[9] Mathew T., Shiju N., Sreekumar K., Rao B.S., Gopinath C.S., J.Catal., 210 (2002), 405.Search in Google Scholar

[10] Abraham T., J. Ceram. Soc. Bull., 62 (1994), 73.Search in Google Scholar

[11] Cullity B.D., Elements Of X-Ray Diffraction, Addison Wesley, India, 1956.Search in Google Scholar

[12] Pecchal R.M., Madhuri W., Ramananhar R.N., Siva Kumar K.V., Murthy V.R., Ramakrishna R., J. Sci. Eng., 30 (2010), 1094.Search in Google Scholar

[13] Gabal M.A., Ahmed M.A., J Mater. Sci., 40 (2005), 388.10.1007/s10853-005-6095-1Search in Google Scholar

[14] Salah L.M., Moustafa A.M., Ahmed Farag I.S., J. Ceram. Int., 38 (2012), 560510.1016/j.ceramint.2012.04.001Search in Google Scholar

[15] Shaikh P.A., Kambale R.C., Rao A.V., Kolekar Y.D., J. Alloy. Compd., 482 (2009), 276.10.1016/j.jallcom.2009.03.187Search in Google Scholar

[16] Belavi P.B., Chavan G.N., Naik L.R., Somashekar R., Kotnala R.K., J. Mater Chem Phys., 132 (2012), 138.10.1016/j.matchemphys.2011.11.009Search in Google Scholar

[17] Ladgaonkar B.P., Kolekar C.B., Vaingankar A.S., J. Mater. Sci., 25 (2002), 351.10.1007/BF02704131Search in Google Scholar

[18] Waldron R.D., J. Phys. Rev., 99 (1955), 1727.10.1103/PhysRev.99.1727Search in Google Scholar

[19] Pradeep A., Priyadharsini P., Chandrasekaran G., J. Magn. Magn. Mater., 2774 (2008), 23.10.1016/j.jmmm.2008.06.012Open DOISearch in Google Scholar

[20] Zuo X., Yang A., Victoria C., Harris V.G., J. Appl. Phys., 99 (2006), 909.10.1063/1.2170048Search in Google Scholar

[21] Neel L., J. Phys., 3 (1948), 137.10.1051/anphys/194812030137Search in Google Scholar

[22] Fargh Ali Aa., Khedr Mh, Abdel Khalek Aa., J. Mater. Process Technol., 81 (2007), 181.10.1016/j.jmatprotec.2006.03.053Search in Google Scholar

[23] Stoner E.C., Wohlfarth E.P., Philo S., J. Trans. Magn., 27 (1991), 3475.10.1109/TMAG.1991.1183750Search in Google Scholar

[24] Lin K.F., Cheng H.M., Hsu H.C., Lin L., Hsieh W.F., J. Chem. Phys. Lett., 409 (2005), 208.10.1016/j.cplett.2005.05.027Search in Google Scholar

[25] Polezhaeva O.S., Yaroshinskaya N.V., Ivanov V.K., J. Inorg. Chem., 52 (2007), 1184.10.1134/S0036023607080049Search in Google Scholar

[26] Lin H., Huang C.P., Li W., Ni C., Shah S.I., Tseng Y.H., J. Appl. Catal. B, 68 (2006), 1.10.1016/j.apcatb.2006.07.018Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo