1. bookVolume 36 (2018): Issue 2 (June 2018)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Photovoltage Formation Across Si P-N Junction Exposed to Laser Radiation

Published Online: 25 Jun 2018
Volume & Issue: Volume 36 (2018) - Issue 2 (June 2018)
Page range: 337 - 340
Received: 14 Jul 2017
Accepted: 04 Dec 2017
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Photovoltage formation across Si p-n junction exposed to laser radiation is experimentally investigated. Illumination of the junction with 1.06 μm wavelength laser radiation leads to formation of classical photovoltage Uphdue to intense electronhole pair generation. When the photon energy is lower than the semiconductor forbidden energy gap, the photovoltage U is found to consist of two components, U = Uf+ Uph. The first Uf is a fast one having polarity of thermoelectromotive force of hot carriers. The second Uphis classical photovoltage with polarity opposite to Uf. It is found that Ufis linearly dependent on laser intensity. The classical photovoltage is established to decrease with the rise of radiation wavelength due to decrease in two-photon absorption coefficient with wavelength. Predominance of each separate component in the formation of the net photovoltage depends on both laser wavelength and intensity

Keywords

[1] POLMAN A., KNIGHT M., GARNETT E.C., EHLER B., SINKE W.C., Science, 352 (2016), aad4424.10.1126/science.aad442427081076Search in Google Scholar

[2] HIRST L.C., EKINS-DAUKES N.J., Prog. Photovolt. Res. Appl., 19 (2011), 286.10.1002/pip.1024Open DOISearch in Google Scholar

[3] ROSS R.T., NOZIK A.J., J. Appl. Phys., 53 (1982), 3813.10.1063/1.331124Search in Google Scholar

[4] KIRK A.P., FISCHETTI M.V., Phys. Rev. B, 86 (2012), 165206-1.10.1103/PhysRevB.86.165206Open DOISearch in Google Scholar

[5] HIRST L.C., FUJII H., WANG Y., SIGIYAMA M., EKINS-DAUKES N.J., IEEE J. Photovolt., 4 (2014), 244.10.1109/JPHOTOV.2013.2289321Search in Google Scholar

[6] RODIERE J., LOMBEZ L., LE CORRE A., DURAND O., GUILLEMOLES J.F., Appl. Phys. Lett., 106 (2015), 183901.10.1063/1.4919901Search in Google Scholar

[7] GRADAUSKAS J., ŠIRMULIS E., AŠMONTAS S., SUŽIED˙E LIS A., DASHEVSKY Z., KASIYAN V., Acta Phys. Pol. A, 119 (2011), 273.10.12693/APhysPolA.119.237Search in Google Scholar

[8] AŠMONTAS S., GRADAUSKAS J., SUŽIED˙ELIS A., ŠIL˙E NAS A., ŠIRMULIS E., VAIˇC IKAUSKAS V., VAIˇCI¯U NAS V., ŽALYS O., FEDORENKO L., BULAT L., Opt. Quant. Electron., 48 (2016), 448.10.1007/s11082-016-0702-zSearch in Google Scholar

[9] BRISTOW A.D., ROTENBERG N., DRIEL VAN H.M., Appl. Phys. Lett., 90 (2007), 191104.10.1063/1.2737359Search in Google Scholar

[10] SPITZER W., FAN M.Y., Phys. Rev., 108 (1957), 268.10.1103/PhysRev.108.268Search in Google Scholar

[11] DARGYS A., KUNDROTAS J., Handbook of physical properties of Ge, Si, GaAs and InP, Science and Encyclopedia Publishers, Vilnius, 1994.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo