1. bookVolume 35 (2017): Issue 3 (October 2017)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Preparation and spectroscopic analysis of zinc oxide nanorod thin films of different thicknesses

Published Online: 31 Oct 2017
Volume & Issue: Volume 35 (2017) - Issue 3 (October 2017)
Page range: 501 - 510
Received: 19 Oct 2016
Accepted: 13 Aug 2017
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Zinc oxide thin films with different thicknesses were prepared on microscopic glass slides by sol-gel spin coating method, then hydrothermal process was applied to produce zinc oxide nanorod arrays. The nanorod thin films were characterized by various spectroscopic methods of analysis. From the images of field emission scanning electron microscope (FESEM), it was observed that for the film thickness up to 200 nm the formed nanorods with wurtzite hexagonal structure were uniformly distributed over the entire surface substrate. From X-ray diffraction analysis it was revealed that the thin films had good polycrystalline nature with highly preferred c-axis orientation along (0 0 2) plane. The optical characterization done by UV-Vis spectrometer showed that all the films had high transparency of 83 % to 96 % in the visible region and sharp cut off at ultraviolet region of electromagnetic spectrum. The band gap of the films decreased as their thickness increased. Energy dispersive X-ray spectroscopy (EDS) showed the presence of zinc and oxygen elements in the films and Fourier transform infrared spectroscopy (FT-IR) revealed the chemical composition of ZnO in the film.

Keywords

[1] WAHAB H.A., SALAMA A.A., EL-SAEID A.A., NUR O., WILLANDER M., BATTISHA I.K., Results Phys., 3 (2013), 46.10.1016/j.rinp.2013.01.005Search in Google Scholar

[2] KHUN K., IBUPOTO Z.H., CHEY C.O., LU J., NUR O., WILLANDER M., Appl. Surf. Sci., 268 (2013), 37.10.1016/j.apsusc.2012.11.141Search in Google Scholar

[3] ZHOU H., LI J., BAO S., LI J., LIU X., JIN P., Appl. Surf. Sci., 363 (2015), 532.10.1016/j.apsusc.2015.12.045Search in Google Scholar

[4] JANOTTI A., WALLE C.G.V., Rep. Prog. Phys., 72 (2009), 126501.10.1088/0034-4885/72/12/126501Search in Google Scholar

[5] ALI M.M., J. Basrah Res., 37 (2011), 49.Search in Google Scholar

[6] KOŁODZIEJCZAK-RADZIMSKA A., JESIONOWSKI T., Materials, 7 (2014), 2833.10.3390/ma7042833545336428788596Search in Google Scholar

[7] ÖZGÜR Ü., ALIVOV Y.I., LIU C., TEKE A., RESHCHIKOV M.A., DO˘G AN S., AVRUTIN V., CHO S.J., MORKOÇD H., J. Appl. Phys., 98 (2005), 041301.10.1063/1.1992666Search in Google Scholar

[8] BARUAH S., DUTTA J., Sci. Technol. Adv. Mat., 10 (2009), 13001.10.1088/1468-6996/10/1/013001510959727877250Search in Google Scholar

[9] DAS R., KUMAR A., KUMAR Y., SEN S., SHIRAGE P.M., RSC Adv., 5 (2015), 60365.10.1039/C5RA07135FSearch in Google Scholar

[10] SKOMPSKA M., ZAREBSKA K., Electrochim. Acta, 127 (2014), 467.10.1016/j.electacta.2014.02.049Search in Google Scholar

[11] MORTEZAALI A., TAHERI O., HOSSEINI Z.S., Microelectron. Eng., 151 (2016), 19.10.1016/j.mee.2015.11.016Search in Google Scholar

[12] SANGARI N.U., DEVI S.C., J. Solid State Chem., 197 (2013), 483.10.1016/j.jssc.2012.08.011Search in Google Scholar

[13] MARIAPPAN R., PONNUSWAMY V., CHANDRA BOSE A., CHITHAMBARARAJ A., SURESH R., RAGAVENDAR M., Superlattice. Microst., 65 (2014), 184.10.1016/j.spmi.2013.10.005Open DOISearch in Google Scholar

[14] SHARMA M., MEHRA R.M., Appl. Surf. Sci., 255 (2008), 252710.1016/j.apsusc.2008.07.153Search in Google Scholar

[15] ZHONG B.Z., FANG G.J., WANG J.F., GUAN W.J., ZHAO X.Z., J. Appl. Phys., 101 (2007), 033713.10.1063/1.2437572Search in Google Scholar

[16] MORTEZAALI A., TAHERI O., HOSSEINI Z.S., Microelectron. Eng., 151 (2016), 19.10.1016/j.mee.2015.11.016Search in Google Scholar

[17] ZHANG S., YAN C., ZHANG H., LU G., Mater. Lett., 148 (2015), 1.10.1016/j.matlet.2015.02.050Search in Google Scholar

[18] XU L., LI X., CHEN Y., XU F., Appl. Surf. Sci., 257 (2011), 4031.10.1016/j.apsusc.2010.11.170Search in Google Scholar

[19] FARHAT O.F., HALIM M.M., ABDULLAH M.J., ALI M.K.M., ALLAM N.K., Beilstein J. Nanotech., 6 (2015), 720.10.3762/bjnano.6.73436198825821712Search in Google Scholar

[20] KASHIF M., HASHIM U., ALI M.E., ALI S.M.U., RUSOP M., IBUPOTO Z.H., WILLANDER M., J. Nanomater., 2012 (2012), 452407.10.1155/2012/452407Search in Google Scholar

[21] FOO K.L., HASHIM U., MUHAMMAD K., VOON C.H., Nanoscale Res. Lett., 9 (2014), 429.10.1186/1556-276X-9-429415002425221458Search in Google Scholar

[22] MARIAPPAN R., PONNUSWAMY V., BOSE A.C., CHITHAMBARARAJ A., SURESH R., RAGAVENDAR M., Superlattice Microst., 65 (2014), 184.10.1016/j.spmi.2013.10.005Open DOISearch in Google Scholar

[23] SRINIVASAN G., KUMAR R.T.R., KUMAR J., J. Sol- Gel Sci. Techn., 43 (2007), 171.10.1007/s10971-007-1574-2Open DOISearch in Google Scholar

[24] MORKOC H., Handbook of Nitride Semiconductors and Devices: Materials Properties, Physics and Growth, Vol. 1, John Wiley & Sons, New Jersey, 2009.10.1002/9783527628438Search in Google Scholar

[25] ROZA L., RAHMAN M.Y.A., UMAR A.A., SALLEH M.M., J. Alloy. Compd., 618 (2015), 153.10.1016/j.jallcom.2014.08.113Search in Google Scholar

[26] JI L.W., PENG S.M., SU Y.K., YOUNG S.J., WU C.Z., CHENG W.B., Appl. Phys. Lett., 94 (2009), 203106.10.1063/1.3141447Search in Google Scholar

[27] CAGLAR M., CAGLAR Y., ILICAN S., J. Optoelectron. Adv. M., 8 (2006), 1410.Search in Google Scholar

[28] BOROWICZ P.B., J. Spectrosc., 2016 (2016), 1617063.Search in Google Scholar

[29] GUPTA R.K., SERBETI Z., YAKUPHANOGLU F., J. Alloy. Compd., 515 (2012), 96.10.1016/j.jallcom.2011.11.098Search in Google Scholar

[30] RAI R.C., J. Appl. Phys., 113 (2013), 153508.10.1063/1.4801900Search in Google Scholar

[31] GADALLAH A.S., EL-NAHASS M.M., Condens. Matter Phys., 2013 (2013), 234546.10.1155/2013/234546Search in Google Scholar

[32] KHAN M.F., ANSARI A.H., HAMEEDULLAH M., AHMAD E., HUSAIN F.M., ZIA Q., BAIG U., ZAHEER M.R., ALAM M.M., KHAN A.M., ALOTHMAN Z.A., AHMAD I., ASHRAF G.M., ALIEV G., Sci. Rep.-UK, 6 (2016), 27689.10.1038/srep27689492388127349836Open DOISearch in Google Scholar

[33] XUA L., LI X., CHEN Y., XU F., Appl. Surf. Sci., 257 (2011), 4031.10.1016/j.apsusc.2010.11.170Search in Google Scholar

[34] ZHANG D., FAN P., CAI X., HUANG J., RU L., ZHENG Z., LIANG G., HUANG Y., Appl. Phys. A, 97 (2009), 437.10.1007/s00339-009-5234-yOpen DOISearch in Google Scholar

[35] NOEI H., QIU H., WANG Y., LÖFFLER E., WÖLLB C., MUHLER M., Phys. Chem. Chem. Phys., 10 (2008), 7092.10.1039/b811029h19039343Search in Google Scholar

[36] CHENG X.L., ZHAO H., HUO H., GAO S., ZHAO J.G., Sensor. Actuat. B-Chem., 102 (2004), 248.10.1016/j.snb.2004.04.080Search in Google Scholar

[37] VIJAYALAKSHMI K., KARTHICK K., GOPALAKRISHNA D., Ceram. Int., 39 (2013), 4749.10.1016/j.ceramint.2012.11.061Search in Google Scholar

[38] JIN F., ZENG X., LIU J., JIN Y., WANG L., ZHONG H., YAO G., HUO Z., Sci. Rep.-UK, 4 (2014), 4503.10.1038/srep04503396848624675820Search in Google Scholar

[39] TÜZEMEN E. ¸S., EKER S., KAVAK H., ESEN R., Appl. Surf. Sci., 255 (2009), 6195.10.1016/j.apsusc.2009.01.078Search in Google Scholar

[40] LEE J., SORESCU D.C., DENG X., J. Phys. Chem. Lett., 7 (2016), 1335.10.1021/acs.jpclett.6b0043227003692Search in Google Scholar

[41] BELAHSSENA O., TEMAM H.B., LAKEL S., BENHAOUA B., BENRAMACHE S., GAREH S., Optik, 126 (2015), 1487.10.1016/j.ijleo.2015.04.010Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo