1. bookVolume 35 (2017): Issue 2 (July 2017)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Influence of annealing temperature on the structural and optical properties of As30Te70 thin films

Published Online: 26 Jul 2017
Volume & Issue: Volume 35 (2017) - Issue 2 (July 2017)
Page range: 335 - 345
Received: 23 Jul 2016
Accepted: 06 Apr 2017
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Chalcogenide glasses have attracted much attention largely due to their interesting physical and chemical properties. Though few published articles exist on the As-Te system, little is known about the optical properties of eutectic or near eutectic composition of As-Te system upon heat treatment. Therefore, this paper reports the effects of annealing temperature on the structural and optical parameters of As30Te70 thin films. The bulk and thin films of 150 nm thick As30Te70 chalcogenide glasses were prepared by melt-quenching and thermal evaporation techniques, respectively. The glass transition and crystallization reactions of the bulk samples were investigated using differential scanning calorimetry (DSC). The influence of annealing temperature on the transformation of the crystal structure was studied by X-ray diffraction (XRD), while the surface morphology of the annealed samples was examined using scanning electron microscope (SEM). The optical band gap, refractive index and extinction coefficient were also calculated. The DSC scans showed that the melting temperature remains constant at 636.56 K. In addition, other characteristic temperatures such as the glass transition temperature, the onset crystallization temperature, and the crystallization peak temperature increase with increasing the heating rate. The crystalline phases for the as-prepared and annealed films consist of orthorhombic As, hexagonal Te, and monoclinic As2Te3 phases. Furthermore, the average crystallite size, strain, and dislocation density depend on the annealing temperature. The optical absorption results revealed that the investigated films have a direct transition, and their optical energy gap decreases from 1.82 eV to 1.49 eV as the annealing temperature increases up to 433 K. However, the refractive index, extinction coefficient, dielectric constant and the ratio of free carrier concentration to its effective mass, increase with increasing the annealing temperature.

Keywords

[1] ZALLEN R., PENCHINA C.M., Am. J. Phys., 54 (1986), 862.10.1119/1.14422Search in Google Scholar

[2] BURINA A., LECANTE P., MOSSET A., GALY J., TONNERRE J.M., RAOUX D., J. Non-Cryst. Solids, 212 (1997), 23.10.1016/S0022-3093(96)00649-7Search in Google Scholar

[3] TITUS S.S.K., ASOKAN S., RAMAKRISHNA R., GOPAL E.S.R., Philos. Mag. B, 62 (1990), 553.10.1080/13642819008215252Search in Google Scholar

[4] ENDO H., HOSHINO H., IKEMOTO H., MIYANAGA T., J. Phys-Condens. Mat., 12 (2000), 6077. 10.1088/0953-8984/12/28/306Search in Google Scholar

[5] KASEMAN D.C., HUNG I., LEE K., KOVNIR K., GAN Z., AITKEN B., SEN S., J. Phys. Chem. B, 119 (2015), 2081.10.1021/jp5123618Search in Google Scholar

[6] SEDDON A.B., J. Non-Cryst. Solids, 184 (1995), 44.10.1016/0022-3093(94)00686-5Search in Google Scholar

[7] DAVIS E.A., MOTT N.F., Philos. Mag., 22 (1970), 0903.10.1080/14786437008221061Search in Google Scholar

[8] TVERJANOVICH A., YAGODKINA M., STRYKANOV V., J. Non-Cryst. Solids, 223 (1998), 86.10.1016/S0022-3093(97)00433-XSearch in Google Scholar

[9] FAIGEL GY., GRANASY L., VINCZE I., DE WAARD H., J. Non-Cryst. Solids, 57 (1983), 411.10.1016/0022-3093(83)90428-3Search in Google Scholar

[10] TOSCANI S., DUGUE J., CEOLIN R., Thermochim. Acta, 196 (1992), 191.10.1016/0040-6031(92)85019-RSearch in Google Scholar

[11] HAFIZ M.M., MOHARRAM A.H., ABU-SEHLY A.A., Appl. Surf. Sci., 115 (1997), 203.10.1016/S0169-4332(96)01088-4Search in Google Scholar

[12] MURUGAVEL S., ACHARYA K.V., ASOKAN S., J. Non- Cryst. Solids, 191 (1995), 327.10.1016/0022-3093(95)00302-9Search in Google Scholar

[13] QUINN R.K., Mater. Res. Bull., 9 (1974), 803.10.1016/0025-5408(74)90116-0Search in Google Scholar

[14] TITUS S.S.K., ASOKAN S., GOPAL E.S.R., Solid State Commun., 83 (1992), 745.10.1016/0038-1098(92)90156-4Search in Google Scholar

[15] CORNET J., ROSSIER D., J. Non-Cryst. Solids, 12 (1973), 85.10.1016/0022-3093(73)90056-2Search in Google Scholar

[16] CORNET J., ROSSIER D., J. Non-Cryst. Solids, 12 (1973), 61.10.1016/0022-3093(73)90055-0Search in Google Scholar

[17] KIM S., KIM H., CHOI S., J. Alloy. Compd., 667 (2016), 91.10.1016/j.jallcom.2016.01.146Search in Google Scholar

[18] JOVARI P., LUCAS P., YANG Z., BUREAU B., KABN I., BEUNEU B., PANATLEI C., BEDNARCIK J., J. Non-Cryst. Solids, 433 (2016), 1.10.1016/j.jnoncrysol.2015.11.003Search in Google Scholar

[19] LUCAS P., COLEMAN G.J., KASEMAN D.C., YANG Z., HUNG I., GAN Z., SEN S., J. Non-Cryst. Solids, 432 (2016), 527.10.1016/j.jnoncrysol.2015.11.010Search in Google Scholar

[20] TVERJANOVICH A., RODIONOV K., BYCHKOV E., J. Solid State Chem., 190 (2012), 271.10.1016/j.jssc.2012.02.044Search in Google Scholar

[21] DONGOL M., HAFIZ M.M., ABOU-ZIED M., ELHADY A.F., Appl. Surf. Sci., 185 (2001), 1.10.1016/S0169-4332(01)00394-4Search in Google Scholar

[22] MANIKANDAN N., ASOKAN S., J. Non-Cryst. Solids, 353 (2007), 1247.10.1016/j.jnoncrysol.2006.10.055Search in Google Scholar

[23] EIFERT J.R., PERETTI E.A., J. Mater. Sci., 3 (1968), 293.10.1007/BF00741964Search in Google Scholar

[24] PATTERSON A.L., Phys. Rev., 56 (1939), 978.10.1103/PhysRev.56.978Search in Google Scholar

[25] ABDEL-RAHIM M.N., ABDEL-LATIF A.Y., SOLTAN A.S., Physica B, 291 (2000), 41.10.1016/S0921-4526(99)01873-6Search in Google Scholar

[26] ABDEL-RAHIM M.A., HAFIZ M.M., MAHMOUD A.Z., Chalcogenide Lett., 12 (2015), 263.Search in Google Scholar

[27] ALTERKOP B., PARKANSKY N., GOLDSMITH S., BOXMAN R.L., J. Phys. D, 36 (2003), 552.10.1088/0022-3727/36/5/320Search in Google Scholar

[28] PANKOVE J.I., Optical processes in semiconductors, Courier Corporation, 2012.Search in Google Scholar

[29] EL-NAHASS M.M., ZEYADA H.M., AZIZ M.S., MAKHLOUF M.M., Opt. Laser Technol., 39 (2007), 347.10.1016/j.optlastec.2005.07.004Search in Google Scholar

[30] ABDEL-RAHIM M.A., J. Phys. Chem.Solids, 60 (1999), 29.10.1016/S0022-3697(98)00250-9Search in Google Scholar

[31] ABDEL-RAHIM M.A., ABDEL-LAATIEF A.Y., RASHAD M., ABDELAZIM N.M., Mat. Sci. Semicon. Proc., 20 (2014), 27.10.1016/j.mssp.2013.12.035Search in Google Scholar

[32] AL-AGEL F.A., Nanoscale Res. Lett., 8 (2013), 1.10.1186/1556-276X-8-520402936524321447Search in Google Scholar

[33] EL-SEBAII A.A., KHAN S.A., AL-MARZOUKI F.M., FAIDAH A.S., AL-GHAMDI A.A., J. Lumin., 132 (2012), 2082.10.1016/j.jlumin.2012.03.046Search in Google Scholar

[34] URBACH F., Phys. Rev., 92 (1953), 1324.10.1103/PhysRev.92.1324Search in Google Scholar

[35] CHAUDHURI S., BISWAS S.K., CHOUDHURY A., GOSWAMI K., J. Non-Cryst. Solids, 54 (1983), 179.10.1016/0022-3093(83)90092-3Search in Google Scholar

[36] HASEGAWA S., KITAGAWA M., Solid State Commun., 27 (1978), 855.10.1016/0038-1098(78)90191-6Search in Google Scholar

[37] VINCENT R.K., HUNT G.R., Appl. Opt., 7 (1968), 53.10.1364/AO.7.00005320062405Search in Google Scholar

[38] GRAVESTEIJN D.J., Appl. Opt., 27 (1988), 736.10.1364/AO.27.00073620523672Search in Google Scholar

[39] WEMPLE S.H., Phys. Rev.B, 7 (1973), 3767.10.1103/PhysRevB.7.3767Search in Google Scholar

[40] ZEMEL J.N., JENSEN J.D., SCHOOLAR R.B., Phys. Rev., 140 (1965), A330.10.1103/PhysRev.140.A330Search in Google Scholar

[41] WALTON A.K., MOSS T.S., Proceed. Phys. Soc., 81 (1963), 509.10.1088/0370-1328/81/3/319Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo