1. bookVolume 35 (2017): Issue 2 (July 2017)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Structural, electronic and magnetic properties of Fe, Co, Ni monatomic nanochains encapsulated in armchair LiF nanotubes

Published Online: 26 Jul 2017
Volume & Issue: Volume 35 (2017) - Issue 2 (July 2017)
Page range: 283 - 290
Received: 08 Jun 2016
Accepted: 18 Mar 2017
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Structural, electronic and magnetic properties of transition metal TM (TM = Fe, Co and Ni) atomic chains wrapped in single walled LiF armchair nanotubes have been investigated by the first-principles calculations in the framework of the density functional theory. The generalized gradient approximation (GGA) with Hubbard repulsion potential and without Hubbard repulsion was employed to describe the exchange-correlation potential. It is found that all these TM chains @LiFNTs systems have negative formation energy so they are stable and exothermic. Total density of states and partial densities of states analyses show that the spin polarization and the magnetic moment of TM chains @LiFNTs(n,n) systems come mostly from the TM atom chains. All these nanocomposites are ferromagnetic (FM) and spin splitting between spin up and down is observed. The high magnetic moment and spin polarization of the TM chains @LiFNT(n,n) systems show that they can be used as magnetic nanostructures possessing potential current and future applications in permanent magnetism, magnetic recording, and spintronics.

Keywords

[1] LI H., ZHAO N., HE C., SHI C., DU X., LI J., J. Alloy. Compd., 465 (2008), 51.10.1016/j.jallcom.2007.10.088Search in Google Scholar

[2] IVANOVSKAYA V.V., K¨O HLER C., SEIFERT G., Phys. Rev. B, 75 (2007), 075410.10.1103/PhysRevB.75.075410Search in Google Scholar

[3] SHAHROKHI M., MORADIAN R., Eur. Phys. J. Appl. Phys., 65 (2014), 20402.10.1051/epjap/2013130016Search in Google Scholar

[4] SHAHROKHI M., NADERI S., FATHALIAN A., Solid State Commun., 152 (2012), 1012.10.1016/j.ssc.2012.03.019Search in Google Scholar

[5] NADERI S., SHAHROKHI M., NORUZI H.R., GURABI A., MORADIAN R., Eur. Phys. J. Appl. Phys., 62 (2013), 30402.10.1051/epjap/2013120340Search in Google Scholar

[6] DELIN A., TOSATTI E., Phys. Rev. B, 68 (2003), 144434. 10.1103/PhysRevB.68.144434Search in Google Scholar

[7] WOLF S.A., AWSCHALOM D.D., BUHRMAN R.A., DAUGHTON J.M., MOLN´AR S., ROUKES M.L., CHTCHELKANOVA A.Y., TREGER D.M., Science, 294 (2001), 1488.10.1126/science.106538911711666Search in Google Scholar

[8] HAMADA N., SAWADA S.I, OSHIYAMA A., Phys. Rev. Lett., 68 (1992), 1579.10.1103/PhysRevLett.68.157910045167Search in Google Scholar

[9] MORADIAN R., SHAHROKHI M., MORADIAN S., Physica E, 47 (2013), 40.10.1016/j.physe.2012.08.004Search in Google Scholar

[10] GOLBERG D., XU F.F,. BANDO Y., Appl. Phys. A, 76 (2003), 479.10.1007/s00339-002-2041-0Search in Google Scholar

[11] TANG C., BANDO Y., GOLBERG D., DING X., QI SH., J. Phys. Chem. B, 107 (2003), 6539.10.1021/jp034310qSearch in Google Scholar

[12] FAGAN S.B., MOTA R., ANTˆO NIO J.R.S., FAZZIO A., Microelectron. J., 34 (2003), 481.10.1016/S0026-2692(03)00078-8Search in Google Scholar

[13] IIJIMA S., Nature, 354 (1991), 56.10.1038/354056a0Search in Google Scholar

[14] SUN X.H., LI C.P., WONG W.K., WONG N.B., LEE C.S., LEE S.T., TEO B.K., J. Am. Chem. Soc., 124 (2002), 14464.10.1021/ja027399712452723Search in Google Scholar

[15] BEHZAD S., CHEGEL R., MORADIAN R., SHAHROKHI M., Superlattice. Microst., 73 (2014), 185.10.1016/j.spmi.2014.05.024Search in Google Scholar

[16] LEE R.S., GAVILLET J., LAMY DE LA CHAPELLE M., LOISEAU A., COCHON J.L., PIGACHE D., THIBAULT J., WILLAIME F., Phys. Rev. B, 64 (2001), 121405.10.1103/PhysRevB.64.121405Search in Google Scholar

[17] MORADIAN R., SHAHROKHI M., CHARGANEH S.S., MORADIAN S., Physica E, 46 (2012), 182.10.1016/j.physe.2012.08.012Search in Google Scholar

[18] XING Y.J., XI Z.H., ZHANG X.D., SONG J.H., WANG R.M., XU J., XUE Z.Q., YU D.P., Solid State Commun., 129 (2004), 671.10.1016/j.ssc.2003.11.049Search in Google Scholar

[19] MORADIAN R., SHAHROKHI M., Physica E, 44 (2011), 1760.10.1016/j.physe.2011.12.010Search in Google Scholar

[20] MORADIAN R., SHAHROKHI M., J. Phys. Chem. Solids, 74 (2013), 1063.10.1016/j.jpcs.2013.02.026Search in Google Scholar

[21] SHAHROKHI M., MORADIAN R., Indian. J. Phys., 89 (2014), 249.10.1007/s12648-014-0567-6Search in Google Scholar

[22] ESMAILIAN A., SHAHROKHI M., KANJOURI F., Int. J. Mod. Phys. C, 26 (2015), 1550130.10.1142/S0129183115501302Search in Google Scholar

[23] ARGHAVANI NIA B., SHAHROKHI M., MORADIAN R., MANOUCHEHRI I., Eur. Phys. J. Appl. Phys., 67 (2014), 20403.10.1051/epjap/2014130513Search in Google Scholar

[24] FATHALIAN A., MORADIAN R., SHAHROKHI M., Solid State Commun., 156 (2013), 1.10.1016/j.ssc.2012.11.017Search in Google Scholar

[25] SHAHROKHI M., LEONARD C., J. Alloy. Compd., 682 (2016), 254.10.1016/j.jallcom.2016.04.288Search in Google Scholar

[26] YANG C.K., ZHAO J., PING LU J., Phys. Rev. B, 74 (2006), 235445.10.1103/PhysRevB.74.235445Search in Google Scholar

[27] MORADIAN R., SHAHROKHI M., KARAMI POURIAN A., J. Magn. Magn. Mater., 344 (2013), 162.10.1016/j.jmmm.2013.04.084Search in Google Scholar

[28] MORADIAN R., SHAHROKHI M., AMJAIAN S., SAMADI J., IJADI R., Eur. Phys. J. Appl. Phys., 67 (2014), 20406.10.1051/epjap/2014130441Search in Google Scholar

[29] WANG S.F., CHEN LI Y., ZHANG Y., ZHANG J.M., JI V., XU K.W., J. Phys. Chem. C, 116 (2012), 1657.10.1021/jp2045146Search in Google Scholar

[30] FERNANDEZ LIMA F.A., HENKES A.V., SILVEIRA E.F., MARCO A.C.N., J. Phys. Chem. C, 116 (2012), 4969.10.1021/jp208090j387378024376901Search in Google Scholar

[31] BLAHA P., SINGH D.J., SORANTIN P.I., SCHWARZ K., Phys. Rev. B, 46 (1992), 1325.10.1103/PhysRevB.46.1321Search in Google Scholar

[32] BLAHA P., SCHWARZ K., MADSEN G.K.H., LUITZ J., WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties, 2001.Search in Google Scholar

[33] PERDEW J.P., BURKE K., ERNZERHOF M., Phys. Rev. Lett., 77 (1996), 3865.10.1103/PhysRevLett.77.386510062328Search in Google Scholar

[34] ANISIMOV V.I., SOLOVYEV I.V., KOROTIN M.A., CZY˙ZYK M.T., SAWATZKY G.A., Phys. Rev. B, 48 (1993), 16929.10.1103/PhysRevB.48.16929Search in Google Scholar

[35] LIECHTENSTEIN A.I., ANISIMOV V.I., ZAANEN J., Phys. Rev. B, 52 (1995), 5467. 10.1103/PhysRevB.52.R5467Search in Google Scholar

[36] LANY S., RAEBIGER H., ZUNGER A., Phys. Rev. B, 77 (2008), (24) 241201.10.1103/PhysRevB.77.241201Search in Google Scholar

[37] SHOAIB MOHAMMED Y., YU Y., HONGXIA W., KAI L., XIAOBO D., J. Magn. Magn. Mater., 322 (2010), 653.Search in Google Scholar

[38] MONKHORST H.J., PACK J.D., Phys. Rev. B, 13 (1976), 5188.10.1103/PhysRevB.13.5188Search in Google Scholar

[39] BAUMEIER B., KR¨U GER P., POLLMANN J., Phys. Rev. B, 76 (2007), 085407.10.1103/PhysRevB.76.085407Search in Google Scholar

[40] ATACA C., CAHANGIROV S., DURGUN E., JANG Y.R., CIRACI S., Phys. Rev. B, 77 (2008), 214413.10.1103/PhysRevB.77.214413Search in Google Scholar

[41] WANG S.F., CHEN LI Y., ZHANG Y., ZHANG J.M., XU K.W., J. Mol. Struc. THEOCHEM., 962 (2010), 108.10.1016/j.theochem.2010.09.023Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo