1. bookVolume 33 (2015): Issue 4 (December 2015)
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year
Open Access

A theoretical analysis of bi-metallic (Cu–Ag)n = 1 − 7 nano alloy clusters invoking DFT based descriptors

Published Online: 06 Jan 2016
Volume & Issue: Volume 33 (2015) - Issue 4 (December 2015)
Page range: 719 - 724
Received: 05 Dec 2014
Accepted: 11 Oct 2015
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year

Due to its large scale applications in the real field, the study of bi-metallic nano-alloy clusters is an active field of research. Though a number of experimental reports are available in this domain, a deep theoretical insight is yet to receive. Among several nano-clusters, the compound formed between Cu–Ag has gained a large importance due to its remarkable optical property. Density Functional Theory (DFT) is one of the most popular approaches of quantum mechanics to study the electronic properties of materials. Conceptually, DFT based descriptors have turned to be indispensable tools for analyzing and correlating the experimental properties of compounds. In this venture, we have analyzed the experimental properties of the (Cu–Ag)n = 1 − 7 nano-alloy clusters invoking DFT methodology. A nice correlation has been found between optical properties of the aforesaid nano-clusters with our evaluated theoretical descriptors. The similar agreement between experimental bond length and computed data is also reflected in this analysis. Beside these, the effect of even-odd alternation behavior of nano compounds on the HOMO-LUMO gap is very important in our computation. It is probably the first attempt to establish such type of correlation.


[1] Zabet-Khosousi A., Dhirani A.-A., Chem. Rev., 108 (2008), 4072.10.1021/cr0680134Search in Google Scholar

[2] Daniel M.C., Astruc D., Chem. Rev., 104 (2004), 293.10.1021/cr030698+Search in Google Scholar

[3] Ghosh S.K., Pal T., Chem. Rev., 107 (2007), 4797.10.1021/cr0680282Search in Google Scholar

[4] Chaudhuri R. G., Paria S., Chem. Rev., 112 (2012), 2373.10.1021/cr100449nSearch in Google Scholar

[5] Alivisatos A.P., Science, 271 (1996), 933.10.1126/science.271.5251.933Search in Google Scholar

[6] Kastner M.A., Phys. Today, 46 (1993), 24.10.1063/1.881393Search in Google Scholar

[7] Haruta M., Cattech, 6 (2002), 102.10.1023/A:1020181423055Search in Google Scholar

[8] Dawid A., Gburski Z., J. Molec. Struct., 410 (1997), 507.10.1016/S0022-2860(97)89230-7Search in Google Scholar

[9] Ismail R., Theoretical studies of free and supported nanoalloy clusters, Ph.D. Thesis (2012), 20.Search in Google Scholar

[10] Roucoux A., Schulz J., Patin H., Chem. Rev., 102 (2002), 3757.10.1021/cr010350j12371901Search in Google Scholar

[11] Munoz-Flores B.M., Kharisov B.I., Jimenez-Perez V.M., Martinez P.E., Lopez S.T., Ind. Eng. Chem. Res., 50 (2011), 7705.10.1021/ie200177dSearch in Google Scholar

[12] Murray R.W., Chem. Rev., 108 (2008), 2688.10.1021/cr068077e18558753Search in Google Scholar

[13] Teng X., Wang Q., Liu P., Han W., Frenkel A.I., Wen, Marinkovic N., Hanson J.C., Rodriguez J.A., J. Am. Chem. Soc., 130 (2008), 1093.10.1021/ja077303e18161978Search in Google Scholar

[14] Ferrando R., Jellinek J., Johnston R.L., Chem. Rev., 108 (2008), 845.10.1021/cr040090g18335972Search in Google Scholar

[15] Henglein A., J. Phys. Chem., 97 (1993), 5457.10.1021/j100123a004Search in Google Scholar

[16] Davis S.C., Klabunde K.J., Chem. Rev., 82 (1982), 153.10.1021/cr00048a002Search in Google Scholar

[17] Lewis L.N., Chem. Rev., 93 (1993), 2693.10.1021/cr00024a006Search in Google Scholar

[18] Schmid G., Chem. Rev., 92 (1992), 1709.10.1021/cr00016a002Search in Google Scholar

[19] Schon G., Simon U., Colloid. Polym. Sci., 273 (1995), 101.10.1007/BF00654007Search in Google Scholar

[20] Oderji H.Y., Ding H., Chem. Phys., 388 (2011), 23.10.1016/j.chemphys.2011.07.011Search in Google Scholar

[21] Liu H.B., Pal U., Medina A., Maldonado C., Ascencio J.A., Phys. Rev. B, 71 (2005), 075403.10.1103/PhysRevB.71.075403Search in Google Scholar

[22] Baletto F., Ferrando R., Rev. Mod. Phys. 77 (2005), 371.10.1103/RevModPhys.77.371Search in Google Scholar

[23] Alonso J.A., Chem. Rev., 100 (2000), 637.10.1021/cr980391oSearch in Google Scholar

[24] Katakuse I., Ichihara T., Fujita Y., Matsuo T., Sakurai T., Matsuda H., Int. J. Mass Spectrom. Ion Processes, 67 (1985), 229.10.1016/0168-1176(85)80021-5Search in Google Scholar

[25] Katakuse I., Ichihara T., Fujita Y., Matsuo T., Sakurai T., Matsuda H., Int. J. Mass Spectrom., 74 (1986), 33.10.1016/0168-1176(86)85021-2Search in Google Scholar

[26] Heer W.A.D., Rev. Mod. Phys., 65 (1993), 611.10.1103/RevModPhys.65.611Search in Google Scholar

[27] Gantefor G., Gausa M., Meiwes-Broer K.-H., Lutz H.O., J. Chem. Soc., Faraday Trans., 86 (1990), 2483.10.1039/FT9908602483Search in Google Scholar

[28] Leopold D.G., Ho J., Lineberger W.C., J. Chem. Phys., 86 (1987), 1715.10.1063/1.452170Search in Google Scholar

[29] Lattes A., Rico I., Savignac A.D., Samii A.A.Z., Tetrahedron, 43 (1987), 1725.10.1016/S0040-4020(01)90284-4Search in Google Scholar

[30] Chen F., Xu G.-Q., Hor T.S.A., Mater. Lett., 57 (2003), 3282.10.1016/S0167-577X(03)00048-XSearch in Google Scholar

[31] Taleb A., Petit C., Pileni M.P., J. Phys. Chem. B, 102 (1998), 2214.10.1021/jp972807sSearch in Google Scholar

[32] Langlois C., Wang Z.W., Pearmain D., Ricolleau C., Li Z.Y., J. Phys., 241 (2010), 012043.10.1088/1742-6596/241/1/012043Search in Google Scholar

[33] Jankowiak J.T.A., Barteau M.A., J. Catal., 236 (2005), 366.10.1016/j.jcat.2005.10.018Search in Google Scholar

[34] Piccinin S., Zafeiratos S., Stampfl C., Hansen T.W., Hävecker M., Teschner D., Phys. Rev. Lett., 104 (2010), 035503-1.10.1103/PhysRevLett.104.035503Search in Google Scholar

[35] Wacker O.J., Kummel R., Gross E.K.U., Phys. Rev. Lett.,73 (1994), 291510.1103/PhysRevLett.73.2915Search in Google Scholar

[36] Illas F., Martin R.L., J. Chem. Phys., 108 (1998), 2519.10.1063/1.475636Search in Google Scholar

[37] Gyorffy B., Staunton J., Stocks G., in: Gross E., Dreizler R. (Eds.), Fluctuations in density functional theory: random metallic alloys and itinerant paramagnets, Plenum, NY, 1995, p. 461.Search in Google Scholar

[38] Kümmel S., Brack M., Phys. Rev. A, 64 (2001), 022506.10.1103/PhysRevA.64.022506Search in Google Scholar

[39] Car R., Parrinello M., Phys. Rev. Lett., 55 (1985), 2471.10.1103/PhysRevLett.55.2471Search in Google Scholar

[40] Koskinen M., Lipas P., Manninen M., Nucl. Phys. A, 591 (1995), 421.10.1016/0375-9474(95)00209-JSearch in Google Scholar

[41] Schmid R.N., Engel E., Dreizler R.M., Phys. Rev. C, 52 (1995), 164.10.1103/PhysRevC.52.1649970494Search in Google Scholar

[42] Chakraborty T., Ghosh D.C., Int. J. Chemoinf. Chem. Eng., 1 (2011), 53.Search in Google Scholar

[43] Chakraborty T., Ghosh D.C., Int. J. Chem. Model., 4 (2012), 413.Search in Google Scholar

[44] Parr R.G., Yang W., Annu. Rev. Phy. Chem., 46 (1995), 701.10.1146/annurev.pc.46.100195.00341324341393Search in Google Scholar

[45] Kohn W., Becke A.D., Parr R.G., J. Phys. Chem., 100 (1996), 12974.10.1021/jp960669lSearch in Google Scholar

[46] Liu S., Parr R.G., J. Chem. Phys., 106 (1997), 5578.10.1063/1.473580Search in Google Scholar

[47] Ziegler T., Chem. Rev., 91 (1991), 651.10.1021/cr00005a001Search in Google Scholar

[48] Parr R.G., Yang W., Density functional theory of atoms and molecules, Oxford University Press, Oxford, 1989.Search in Google Scholar

[49] Chermette H., J. Comp. Chem., 20 (1999), 129.10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-ASearch in Google Scholar

[50] Geerlings P., Proft F.D., Langenaeker W., Chem. Rev., 103 (2003), 1793.10.1021/cr990029pSearch in Google Scholar

[51] Geerlings P., Proft F.D., Int. J. Mol. Sci., 3 (2002), 276.10.3390/i3040276Search in Google Scholar

[52] ADF2013, SCM, Theoretical chemistry, Vrije Universiteit, Amsterdam, 2013.Search in Google Scholar

[53] Jones R.O., Gunnarsson O., Rev. Mod. Phys., 61 (1989), 689.10.1103/RevModPhys.61.689Search in Google Scholar

[54] Zupan A., Blaha P., Schwarz K., Perdew J.P., Phys. Rev. B., 58 (1998), 11266.10.1103/PhysRevB.58.11266Search in Google Scholar

[55] Theilhaber J., Phys. Fluids B, 4 (1992), 2044.10.1063/1.860013Search in Google Scholar

[56] Stadler R., Gillan M.J., J. Phys.-Condens. Mat., 12 (2000), 6053.10.1088/0953-8984/12/28/304Search in Google Scholar

[57] Argaman N., Makov G., J. Phys.-Condens. Mat., 68 (2000), 69.10.1119/1.19375Search in Google Scholar

[58] Xiao H., Kheli J.T., Goddard III W.A., J. Phys. Chem. Lett., 2 (2011), 212.10.1021/jz101565jSearch in Google Scholar

[59] Wang H.Q., Kuang X.Y., Li H.F., Phys. Chem. Chem. Phys., 12 (2010), 5156.10.1039/b923003c20358129Search in Google Scholar

[60] Beutel V., Kramer H.G., Bhale G.L., Kuhn M., Weyers K., Demtroder W., J. Chem. Phys., 98 (1993), 2699.10.1063/1.464151Search in Google Scholar

[61] Balbuena P.B., Derosa P.A., Seminario J.M., J. Phys. Chem. B, 103 (1999), 2830.10.1021/jp982775oSearch in Google Scholar

[62] Bishea G.A., Marak N., Morse M.D., J. Chem. Phys., 95 (1991), 5618.10.1063/1.461637Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo