1. bookVolume 33 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Two-extremum electrostatic potential of metal-lattice plasma and the work function of an electron

Published Online: 11 Jul 2015
Volume & Issue: Volume 33 (2015) - Issue 2 (June 2015)
Page range: 430 - 444
Received: 20 Oct 2014
Accepted: 05 Jan 2015
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Metal-lattice plasma is treated as a neutral two-component two-phase system of 2D surface and 3D bulk. Free electron density and bulk chemical potential are used as intensive parameters of the system with the phase boundary position determined in the crystalline lattice. A semiempirical expression for the electron screened electrostatic potential is constructed using the lattice-plasma polarization concept. It comprises an image term and three repulsion/attraction terms of second and fourth orders. The novel curve has two extremes and agrees with certain theoretical forms of potential. A practical formula for the electron work function of metals and a simplified schema of electronic structure at the metal/vacuum interface are proposed. This yields 10.44 eV for the Fermi energy of free electron gas; -5.817 eV for the Fermi energy level; 4.509 eV for the average work function of bcc tungsten. Selected data are also given for fcc Cu and hcp Re. For harmonic frequencies ~ 10E16 per s of the self-excited metal-lattice plasma, energy gaps of 14.54 and 8.02 eV are found, which correspond to the bulk and surface plasmons, respectively. Further extension of this thermodynamics and metal-lattice theory based approach may contribute to a better understanding of theoretical models which are employed in chemical physics, catalysis and materials science of nanostructures.

Keywords

[1] ZIMAN J.M., Principles of the Theory of Solids, Cambridge University Press, Cambridge/New York/Melbourne 1972.Search in Google Scholar

[2] HARRISON W.A., Pseudopotentials in The Theory of Metals, W.A. Benjamin Inc., New York/Amsterdam 1966.Search in Google Scholar

[3] SCHWERDTFEGER P., Chem. Phys. Chem., 12 (2011), 3143.10.1002/cphc.20110038721809427Search in Google Scholar

[4] LANG N.D., KOHN W., Phys. Rev. B, 1 (1970), 4555.10.1103/PhysRevB.1.4555Search in Google Scholar

[5] LANG N.D., KOHN W., Phys. Rev. B, 3 (1971), 1215.10.1103/PhysRevB.3.1215Search in Google Scholar

[6] LANG N.D., KOHN W., Phys. Rev. B, 7 (1973), 3541.10.1103/PhysRevB.7.3541Search in Google Scholar

[7] HOHENBERG P., KOHN W., Phys. Rev. B, 136 (1964), 864.10.1103/PhysRev.136.B864Search in Google Scholar

[8] TAVARES F.W., PRAUSNITZ J.M., Colloid Polym. Sci., 282 (2004), 620.10.1007/s00396-003-0987-xSearch in Google Scholar

[9] ROTHSCHILD J.A., EIZENBERG M., Phys. Rev. B, 81 (2010), 224201.10.1103/PhysRevB.81.224201Search in Google Scholar

[10] BRODIE I., Phys. Rev. B, 51 (1995), 13660.10.1103/PhysRevB.51.13660Search in Google Scholar

[11] BRODIE I., CHOU S.H., YUAN H., Surf. Sci., 625 (2014), 112.10.1016/j.susc.2014.03.002Search in Google Scholar

[12] HALAS S., DURAKIEWICZ T., J. Phys.-Condens. Mat., 10 (1998), 10815.10.1088/0953-8984/10/48/005Search in Google Scholar

[13] DURAKIEWICZ T., HALAS S., ARKO A., JOYCE J.J., MOORE D.P., Phys. Rev. B, 64 (2001), 045101.10.1103/PhysRevB.64.045101Search in Google Scholar

[14] YOUNG R.D., Phys. Rev., 113 (1959), 110.10.1103/PhysRev.113.110Search in Google Scholar

[15] APPELBAUM J.A., HAMANN D.R., Phys. Rev. B, 6 (1972), 1122.10.1103/PhysRevB.6.1122Search in Google Scholar

[16] SURMA S.A., Phys. Status Solidi A, 183 (2001), 307.10.1002/1521-396X(200102)183:2<307::AID-PSSA307>3.0.CO;2-ZSearch in Google Scholar

[17] MEYER B., The Pseudopotential Plane Wave Approach, in: GROTENDORST J., BLUEGEL S., MARX D. (Eds.), Computational Nanoscience: Do It Yourself!, NIC Series, John von Neumann Institute for Computing, Juelich, 2006, p. 71, Fig. 3; CLARK S.J., Complex structures in tetrahedrally bonded semiconductors, Ph.D. thesis, University of Edinburgh, http://cmt.dur.ac.uk/sjc/thesise-copy, 1994, p. 30, Fig. 3.4.Search in Google Scholar

[18] MACKENZIE J.K., MOORE A.J.W., NICHOLAS J.F., J. Phys. Chem. Solids, 23 (1962), 185; MACKENZIE J.K., NICHOLAS J.F., J. Phys. Chem. Solids, 23 (1962), 197; NICHOLAS J.F., An Atlas of Models of Crystal Surfaces, Gordon & Breach, New York/London/Paris, 1965, p. 1.Search in Google Scholar

[19] SMOLUCHOWSKI R., Phys. Rev., 60 (1941), 661.10.1103/PhysRev.60.661Search in Google Scholar

[20] YAVORSKI B.M., DETLAF A.A., Spravochnik po fizike, Nauka, Moscow, 1990.Search in Google Scholar

[21] RAIMES S., TheWave Mechanics of Electrons in Metals, North-Holland, Amsterdam, 1961.Search in Google Scholar

[22] KITTEL C., Introduction to Solid State Physics, John Wiley & Sons, 1996.Search in Google Scholar

[23] FEYNMAN R.P., LEIGHTON R.B., SANDS M., The Feynman Lectures on Physics, Addison-Wesley, Reading, Ma., 1965.10.1119/1.1972241Search in Google Scholar

[24] ARTSIMOVICH L.A., Elementarnaya fizika plazmy, Atomizdat, Moscow, 1969.Search in Google Scholar

[25] VAN MEERSSCHE M., FENEAU-DUPONT J., Introduction a la cristallographie et a la chimie structural, OYEZ, Leuven/Bruxelles/Paris, 1976.Search in Google Scholar

[26] DEREN J., HABER J., PAMPUCH R., Chemia Ciala Stalego, PWN, Warszawa, 1975.Search in Google Scholar

[27] KIEJNA A., WOJCIECHOWSKI K.F., Metal Surface Electron Physics, Pergamon, Oxford, 1996. 28] SWANSON L.W., DAVIS P.R., Work function measurements, in: PARK R.L., LAGALLY M.G. (Eds.), Methods of Experimental Physics, vol. 22, Solid State Physics: Surfaces, Academic Press, Orlando, Fl., 1985, p. 1.Search in Google Scholar

[29] ASHCROFT N.W., MERMIN N.D., Solid State Physics, Holt, Rinehart and Winston, New York, 1976.Search in Google Scholar

[30] VAN DER ZIEL A., Solid State Physical Electronics, Prentice Hall, Englewood Cliffs, NJ., 1976.Search in Google Scholar

[31] DOBRETSOV L.N., GOMOYUNOVA M.V., Emissionnaya Elektronika, Nauka, Moscow, 1966.Search in Google Scholar

[32] WIGNER E.P., BARDEEN J., Phys. Rev., 48 (1935), 84.10.1103/PhysRev.48.84Search in Google Scholar

[33] BARDEEN J., Phys. Rev., 49 (1936), 653.10.1103/PhysRev.49.653Search in Google Scholar

[34] HERRING C., NICHOLS M.H., Rev. Mod. Phys., 21 (1949), 185.10.1103/RevModPhys.21.185Search in Google Scholar

[35] KORYTA J., DVORAK J., BOHACKOVA V., Lehrbuch der Elektrochemie, Springer, Wien/New York, 1975.10.1007/978-3-7091-8418-9Search in Google Scholar

[36] LANDAU L.D., LIFSHITS E.M., Quantum Mechanics, Pergamon, London, 1958.Search in Google Scholar

[37] TSONG T.T., MUELLER E.W., Phys. Rev., 181 (1969), 530.10.1103/PhysRev.181.530Search in Google Scholar

[38] LI W., LI D.Y., Phys. Status Solidi A, 196 (2003), 390.10.1002/pssa.200305939Search in Google Scholar

[39] FEYNMAN R.P., Statistical Mechanics. A Set of Lectures, W.A. Benjamin, New York, 1972, Fig. 2.3 and 4.1 and related text; FEYNMAN R.P., Quantum Electrodynamics, W.A. Benjamin, New York, 1961, Fig. 11.Search in Google Scholar

[40] ONO M., NISHIGATA Y., NISHIO T., EGUCHI T., HASEGAWA Y., Phys. Rev. Lett., 96 (2006), 016801.10.1103/PhysRevLett.96.016801Search in Google Scholar

[41] ONO M., NISHIO T., AN T., EGUCHI T., HASEGAWA Y., Appl. Surf. Sci. 256 (2009), 469.10.1016/j.apsusc.2009.07.023Search in Google Scholar

[42] DURAKIEWICZ T., Phys. Rev. B, 61 (2000), 11166.10.1103/PhysRevB.61.11166Search in Google Scholar

[43] JANSSENS T.V.W., CASTRO G.R., WANDELT. K., NIEMANTSVERDRIET J.W., Phys. Rev. B, 49 (1994), 14599.10.1103/PhysRevB.49.14599Search in Google Scholar

[44] KHOKONOV K.B., ZADUMKIN S.N., Zavisimost raboty wykhoda ot razmerov chastits, in: OVSENKO D.YE. (Ed.), Rost i Nesovershenstva Metallicheskikh Kristallov, Naukova Dumka, Kiev, 1966, p. 304.Search in Google Scholar

[45] TODD C.J., RHODIN T.N., Surf. Sci., 36 (1973), 353.10.1016/0039-6028(73)90265-3Search in Google Scholar

[46] SUN C.Q., Prog. Solid State Ch., 35 (2007), 1.10.1016/j.progsolidstchem.2006.03.001Search in Google Scholar

[47] YOUNG R.D., CLARK H.E., Phys. Rev. Lett., 17 (1966), 351.10.1103/PhysRevLett.17.351Search in Google Scholar

[48] DRECHSLER M., The Equilibrium Shape of Metal Crystals, in: VU THIEN BINH (Ed.), Surface Mobilities on Solid Materials, Plenum Press, New York/London, 1983, p. 405.10.1007/978-1-4684-4343-1_17Search in Google Scholar

[49] EFRIMA S., Surf. Sci., 107 (1981), 337.10.1016/0039-6028(81)90629-4Search in Google Scholar

[50] WOJCIECHOWSKI K.F., Mod. Phys. Lett. B, 12 (1998), 685.10.1142/S0217984998000809Search in Google Scholar

[51] GUMBS G., KOGAN E., Phys. Status Solidi B, 244 (2007), 3695.10.1002/pssb.200743170Search in Google Scholar

[52] MIZERSKI W., Tablice Chemiczne, Adamantan, Warszawa, 1997.Search in Google Scholar

[53] MUELLER E.W., TSONG T.T., Field Ion Microscopy - Principles and Applications, American Elsevier, New York, 1969, p. 70.Search in Google Scholar

[54] KELLOG G.L., TSONG T.T., COWAN P., Surf. Sci., 70 (1978), 485.10.1016/0039-6028(78)90428-4Search in Google Scholar

[55] SMITH J.R., Phys. Rev., 181 (1969), 522.10.1103/PhysRev.181.522Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo