Open Access

Halloysite Composites with Fe3O4Particles: The Effect of Impregnation on the Removal of Aqueous Cd(II) And Pb(II)


Cite

Amjadi, M., Samadi, A., & Manzoori, J. L. (2015). A composite prepared from halloysite nanotubes and magnetite (Fe3O4) as a new magnetic sorbent for the preconcentration of cadmium(II) prior to its determination by flame atomic absorption spectrometry. Microchimica Acta. 182(9-10), 1627-1633. DOI:10.1007/s00604-015-1491-y.10.1007/s00604-015-1491-yOpen DOISearch in Google Scholar

Bagbi, Y., Sarswat, A., Mohan, D., Pandey, A., & Solanki, P. R. (2016). Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. Journal of Environmental Chemical Engineering. 4(4), 4237-4247. DOI: 10.1016/j.jece.2016.09.026.10.1016/j.jece.2016.09.026Open DOISearch in Google Scholar

Bajda, T., Szala, B., & Solecka, U. (2015). Removal of lead and phosphate ions from aqueous solutions by organo-smectite. Environmental Technology. 36(22), 2872-2883. DOI: 10.1080/09593330.2015.1051135.10.1080/09593330.2015.1051135Open DOISearch in Google Scholar

Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N. K., & Matis, K. A. (2003). Hybrid flotation- membrane filtration process for the removal of heavy metal ions from wastewater. Water Research. 37(16), 4018-4026. DOI: 10.1016/s0043-1354(03)00314-2.10.1016/s0043-1354(03)00314-2Open DOISearch in Google Scholar

Dąbrowski, A., Hubicki, Z., Poskościelny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 56, 91-106. DOI: 10.1016/j.chemosphere.2004.03.006.10.1016/j.chemosphere.2004.03.00615120554Open DOISearch in Google Scholar

Duan, J., Liu, R., Chen, T., Zhang, B., & Liu, J. (2012). Halloysite nanotube-Fe3O4composite for removal of methyl violet from aqueous solutions. Desalination. 293, 46-52. DOI: 10.1016/j.desal.2012.02.022.10.1016/j.desal.2012.02.022Open DOISearch in Google Scholar

Dubinin, M. M. (1960). The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces. Chemical Reviews. 60(2), 235-241. DOI: 10.1021/cr60204a006.10.1021/cr60204a006Open DOISearch in Google Scholar

Ebrahim, S. E., Sulaymon, A. H., & Saad Alhares, H. (2015). Competitive removal of Cu2+, Cd2+, Zn2+, and Ni2+ions onto iron oxide nanoparticles from wastewater. Desalination and Water Treatment. 57(44), 20915-20929. DOI: 10.1080/19443994.2015.1112310.10.1080/19443994.2015.1112310Open DOISearch in Google Scholar

Elkamash, A., Zaki, A., & Elgeleel, M. (2005). Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. Journal of Hazardous Materials. 127(1-3), 211-220. DOI: 10.1016/j.jhazmat.2005.07.021.10.1016/j.jhazmat.2005.07.02116125311Open DOISearch in Google Scholar

Freundlich, H. M. F. (1906). Uber die adsorption in losungen. Zeitschrift für Physikalische Chemie. 57A, 385-470.Search in Google Scholar

Fu, R., Wang, W., Han, R., & Chen, K. (2008). Preparation and characterization of γ-Fe2O3/ZnO composite particles. Materials Letters. 62(25), 4066-4068. DOI: 10.1016/j.matlet.2008.05.006.10.1016/j.matlet.2008.05.006Open DOISearch in Google Scholar

Ghasemi, E., Heydari, A., & Sillanpää, M. (2017). Superparamagnetic Fe3O4@EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) from water and soil environmental samples. Microchemical Journal. 131, 51-56. DOI: 10.1016/j.microc.2016.11.011.10.1016/j.microc.2016.11.011Open DOISearch in Google Scholar

Hashemian, S., Saffari, H., & Ragabion, S. (2014). Adsorption of Cobalt(II) from Aqueous Solutions by Fe3O4/Bentonite Nanocomposite. Water, Air, & Soil Pollution. 226(1). DOI: 10.1007/s11270-014-2212-6.10.1007/s11270-014-2212-6Open DOISearch in Google Scholar

Hosseinzadeh, M., Ebrahimi, S. A. S., Raygan, S., & Masoudpanah, S. M. (2016). Removal of Cadmium and Lead Ions from Aqueous Solution by Nanocrystalline Magnetite Through Mechanochemical Activation. Journal of Ultrafine Grained and Nanostructured Materials. 49(2), 72-79. DOI: 10.7508.jufgnsm/2016.02.03.Search in Google Scholar

Iyengar, S. J., Joy, M., Ghosh, C. H., Dey, S., Kotnala, R. K., & Ghosh, S. (2014). Magnetic, X-ray and Mössbauer studies on Magnetite/Maghemite Core-Shell Nanostructures Fabricated through Aqueous Route. RSC Advances. 4(110), 64919-64929. DOI: 10.1039/b000000x.10.1039/b000000xOpen DOISearch in Google Scholar

Jiang, M.-q., Jin, X.-y., Lu, X.-Q., & Chen, Z.-l. (2010). Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 252(1-3), 33-39. DOI: 10.1016/j.desal.2009.11.005.10.1016/j.desal.2009.11.005Open DOISearch in Google Scholar

Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., & Delvaux, B. (2005). Halloysite clay minerals - a review. Clay Minerals. 40, 383-426. DOI: 10.1180/0009855054040180.10.1180/0009855054040180Open DOISearch in Google Scholar

Karimzadeh, I., Aghazadeh, M., Ganjali, M. R., Doroudi, T., & Kolivand, P. H. (2017). Preparation and characterization of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route. Journal of Magnetism and Magnetic Materials. 433, 148-154. DOI: 10.1016/j.jmmm.2017.02.048.10.1016/j.jmmm.2017.02.048Open DOISearch in Google Scholar

Kharissova, O. V., Dias, H. V. R., & Kharisov, B. I. (2015). Magnetic adsorbents based on micro- and nanostructured materials. RSC Adv. 5(9), 6695-6719. DOI: 10.1039/c4ra11423j.10.1039/c4ra11423jOpen DOISearch in Google Scholar

Koteja, A., & Matusik, J. (2015). Di- and triethanolamine grafted kaolinites of different structural order as adsorbents of heavy metals. Journal of Colloid and Interface Science. 455, 83-92. DOI: 10.1016/j.jcis.2015.05.027.10.1016/j.jcis.2015.05.02726057107Open DOISearch in Google Scholar

Kumari, M., Pittman, C. U., & Mohan, D. (2015). Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. Journal of Colloid and Interface Science. 442, 120-132. DOI: 10.1016/j.jcis.2014.09.012.10.1016/j.jcis.2014.09.01225531287Open DOISearch in Google Scholar

Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38, 2221-2295. DOI: 10.1021/ja02254a006.10.1021/ja02254a006Open DOISearch in Google Scholar

Lunge, S., Singh, S., & Sinha, A. (2014). Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. Journal of Magnetism and Magnetic Materials. 356, 21-31. DOI: 10.1016/j.jmmm.2013.12.008.10.1016/j.jmmm.2013.12.008Open DOISearch in Google Scholar

Magnacca, G., Allera, A., Montoneri, E., Celi, L., Benito, D. E., Gagliardi, L. G., Gonzalez, M. C., Mártire, D. O., & Carlos, L. (2014). Novel Magnetite Nanoparticles Coated with Waste-Sourced Biobased Substances as Sustainable and Renewable Adsorbing Materials. ACS Sustainable Chemistry & Engineering. 2(6), 1518-1524. DOI: 10.1021/sc500213j.10.1021/sc500213jOpen DOISearch in Google Scholar

Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2002). Chemical precipitation of heavy metals from acid mine drainage. Water Research. 36, 4757-4764. DOI: 10.1016/S0043-1354(02)00149-5.10.1016/S0043-1354(02)00149-5Open DOISearch in Google Scholar

Matusik, J. (2010).Minerały z grupy kaolinitu jako prekursory nanorurek mineralnych (Kaolin group minerals as precursors of mineral nanotube). PhD thesis, AGH University of Science and Technology, Krakow, 174 pp. [in Polish].Search in Google Scholar

Matusik, J. (2016). Halloysite for Adsorption and Pollution Remediation. In Yuan, Thill & Faiza, Nanosized Tubular Clay Minerals (606-627). Elsevier.10.1016/B978-0-08-100293-3.00023-6Search in Google Scholar

Matusik, J., & Wścisło, A. (2014). Enhanced heavy metal adsorption on functionalized nanotubular halloysite interlayer grafted with aminoalcohols. Applied Clay Science. 100, 50-59. DOI: 10.1016/j.clay.2014.06.034.10.1016/j.clay.2014.06.034Open DOISearch in Google Scholar

Maziarz, P., & Matusik, J. (2016). The effect of acid activation and calcination of halloysite on the efficiency and selectivity of Pb(II), Cd(II), Zn(II) and As(V) uptake. Clay Minerals. 51(3), 385-394. DOI: 10.1180/claymin.2016.051.3.06.10.1180/claymin.2016.051.3.06Open DOISearch in Google Scholar

Mehta, D., Mazumdar, S., & Singh, S. K. (2015). Magnetic adsorbents for the treatment of water/wastewater-A review. Journal of Water Process Engineering. 7, 244-265. DOI: 10.1016/j.jwpe.2015.07.001.10.1016/j.jwpe.2015.07.001Open DOISearch in Google Scholar

Motsi, T., Rowson, N. A., & Simmons, M. J. H. (2011). Kinetic studies of the removal of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing. 101(1-4), 42-49. DOI: 10.1016/j.minpro.2011.07.004.10.1016/j.minpro.2011.07.004Open DOISearch in Google Scholar

Nightingale, E. R. (1959). Phenomenological theory of ion solvation. Effective radii of hydrated ions. Journal of Physical Chemistry. 63, 1381-1387. DOI: 10.1021/j150579a011.10.1021/j150579a011Open DOISearch in Google Scholar

Oliveira, L. C. A., Rios, R. V. R. A., Fabris, J. D., Sapag, K., Garg, V. K., & Lago, R. M. (2003). Clay-iron oxide magnetic composites for the adsorption of contaminants in water. Applied Clay Science. 22(4), 169-177. DOI: 10.1016/s0169-1317(02)00156-4.10.1016/s0169-1317(02)00156-4Open DOISearch in Google Scholar

Ozaki, H., Sharmab, K., & Saktaywirf, W. (2002). Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination. 144, 287-294. DOI: 10.1016/S0011-9164(02)00329-6.10.1016/S0011-9164(02)00329-6Open DOISearch in Google Scholar

Papoulis, D., Komarneni, S., Nikolopoulou, A., Tsolis-Katagas, P., Panagiotaras, D., Kacandes, H. G., Zhang, P., Yin, S., Sato, T., & Katsuki, H. (2010). Palygorskite- and Halloysite-TiO2 nanocomposites: Synthesis and photocatalytic activity. Applied Clay Science. 50(1), 118-124. DOI: 10.1016/j.clay.2010.07.013.10.1016/j.clay.2010.07.013Open DOISearch in Google Scholar

Rajput, S., Pittman, C. U., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science. 468, 334-346. DOI: 10.1016/j.jcis.2015.12.008.10.1016/j.jcis.2015.12.008Open DOISearch in Google Scholar

Rendon, J. L., & Serna, C. J. (1981). IR Spectra Of Powder Hematite: Effects Of Particle Size And Shape. Clay Minerals. 16(4), 375-381.10.1180/claymin.1981.016.4.06Search in Google Scholar

Rodulfo-Baechler, S. M., González-Cortés, S. L., Orozco, J., Sagredo, V., Fontal, B., Mora, A. J., & Delgado, G. (2004). Characterization of modified iron catalysts by X-ray diffraction, infrared spectroscopy, magnetic susceptibility and thermogravimetric analysis. Materials Letters. 58(20), 2447-2450. DOI: 10.1016/j.matlet.2004.02.032.10.1016/j.matlet.2004.02.032Open DOISearch in Google Scholar

Rouxhet, P. G., Samudacheata, N., Jacobs, H., & Anton, O. (1977). Attribution Of The OH Stretching Bands Of Kaolinite. Clay Minerals. 12, 171-179. DOI: 10.1180/claymin.1977.012.02.0710.1180/claymin.1977.012.02.07Open DOISearch in Google Scholar

Rzepa, G., Bajda, T., & Ratajczak, T. (2009). Utilization of bog iron ores as sorbents of heavy metals. Journal of Hazardous Materials. 162(2-3), 1007-1013. DOI: 10.1016/j.jhazmat.2008.05.135.10.1016/j.jhazmat.2008.05.135Open DOISearch in Google Scholar

Silva, V. A. J., Andrade, P. L., Silva, M. P. C., Bustamante D, A., De Los Santos Valladares, L., & Albino Aguiar, J. (2013). Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. Journal of Magnetism and Magnetic Materials. 343, 138-143. DOI :10.1016/j.jmmm.2013.04.062.10.1016/j.jmmm.2013.04.062Open DOISearch in Google Scholar

Smičiklas, I. D., Milonjić, S. K., Pfendt, P., & Raičević, S. (2000). The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Separation and Purification Technology. 18(3), 185-194. DOI: 10.1016/s1383-5866(99)00066-0.10.1016/s1383-5866(99)00066-0Open DOISearch in Google Scholar

Theng, B. K. G., Russel, M., Churchman, G. J., & Parfitt, R. L. (1982). Surface Properties Of Allophane, Halloysite, And Imogolite. Clays and Clay Minerals. 30(2), 143-149. DOI: 10.1346/CCMN.1982.0300209.10.1346/CCMN.1982.0300209Open DOISearch in Google Scholar

Tian, X., Wang, W., Tian, N., Zhou, C., Yang, C., & Komarneni, S. (2016). Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid. Journal of Hazardous Materials. 309, 151-156. DOI: 10.1016/j.jhazmat.2016.01.081.10.1016/j.jhazmat.2016.01.08126894287Open DOISearch in Google Scholar

Unuabonah, E. I., Adebowale, K. O., Olu-Owolabi, B. I., Yang, L. Z., & Kong, L. X. (2008). Adsorption of Pb (II) and Cd (II) from aqueous solutions onto sodium tetraborate-modified Kaolinite clay: Equilibrium and thermodynamic studies. Hydrometallurgy. 93(1-2), 1-9. DOI: 10.1016/j.hydromet.2008.02.009.10.1016/j.hydromet.2008.02.009Open DOISearch in Google Scholar

Wang, C. Y., Hong, J. M., Chen, G., Zhang, Y., & Gu, N. (2010). Facile method to synthesize oleic acid-capped magnetite nanoparticles. Chinese Chemical Letters. 21(2), 179-182. DOI: 10.1016/j.cclet.2009.10.024.10.1016/j.cclet.2009.10.024Open DOISearch in Google Scholar

Wang, L., Cheng, C., Tapas, S., Lei, J., Matsuoka, M., Zhang, J., & Zhang, F. (2015). Carbon dots modified mesoporous organosilica as an adsorbent for the removal of 2,4- dichlorophenol and heavy metal ions. Journal of Materials Chemistry A. 3, 13357-13364. DOI: 10.1039/c5ta01652e.10.1039/c5ta01652eOpen DOISearch in Google Scholar

Wang, R., Jiang, G., Ding, Y., Wang, Y., Sun, X., Wang, X., & Chen, W. (2011). Photocatalytic Activity of Heterostructures Based on TiO2 and Halloysite Nanotubes. ACS Applied Materials & Interfaces. 3(10), 4154-4158. DOI: 10.1021/am201020q.10.1021/am201020q21916434Open DOISearch in Google Scholar

Xie, Y., Qian, D., Wu, D., & Ma, X. (2011). Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chemical Engineering Journal. 168(2), 959-963. DOI: 10.1016/j.cej.2011.02.031.10.1016/j.cej.2011.02.031Open DOISearch in Google Scholar

Xu, D., Tan, X., Chen, C., & Wang, X. (2008). Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials. 154(1-3), 407-416. DOI: 10.1016/j.jhazmat.2007.10.059.10.1016/j.jhazmat.2007.10.05918053642Open DOISearch in Google Scholar

Yantasee, W., Warner, C. L., Sangvanich, T., Addleman, R. S., Carter, T. G., Wiacek, R., Fryxell, G. E., Timchalk, C., & Warner, M. G. (2007). Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles. Environmental Science & Technology. 41(14), 5114-5119. DOI: 10.1021/es0705238.10.1021/es070523817711232Open DOISearch in Google Scholar

Zhang, S. Q., & Hou, W. G. (2008). Adsorption behavior of Pb(II) on montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 320(1-3), 92-97. DOI: 10.1016/j.colsurfa.2008.01.038.10.1016/j.colsurfa.2008.01.038Open DOISearch in Google Scholar

Zhang, Z., & Kong, J. (2011). Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. Journal of Hazardous Materials. 193, 325-329. DOI: 10.1016/j.jhazmat.2011.07.033.10.1016/j.jhazmat.2011.07.03321813238Open DOISearch in Google Scholar

eISSN:
1899-8526
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, Geophysics, other