Open Access

Obtaining a Well-Aligned ZnO Nanotube Array Using the Hydrothermal Growth Method / Labi Sakārtotu Zno Nanocauruļu Kopu Iegūšana, Izmantojot Hidrotermālo Metodi


Cite

1. Fan, Z., and Lu, J. G. (2005). Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol. 5 (10), 1561-73. DOI: 10.1166/jnn.2005.182.10.1166/jnn.2005.18216245516Search in Google Scholar

2. Xu, S., and Wang, Z. L. (2011). One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 4 (11). DOI: 10.1007/s12274-011-0160-7.10.1007/s12274-011-0160-7Search in Google Scholar

3. Amin, G. (2012). ZnO and CuO Nanostructures: Low Temperature Growth, Characterization, Their Optoelectronic and Sensing Applications. Linköping Studies in Science and Technology, Dissertation, No. 1441.Search in Google Scholar

4. Chae, K., Zhang, Q., Kim, J.S., Jeong, Y., and Cao, G. (2010). Low-temperature solution growth of ZnO nanotube arrays. Beilstein J.Nanotechnol 1, 128-134. DOI:10.3762/ bjnano.1.15.10.3762/bjnano.1.15304591421977402Search in Google Scholar

5. McCune, M., Zhang, W., and Deng, Y. (2012). High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with “caterpillar-like” structure. Nano Lett. 12 (7), 3656−3662. DOI: 10.1021/nl301407b.10.1021/nl301407b22731504Search in Google Scholar

6. Barreca, D., Bekermann, D., Comini, E., Devi, A., Fischer, R., Gasparotto, A., Maccato, C., Sada, C., Sberveglieric, G., and Tondellod, E. (2010). Urchin-like ZnO nanorod arrays for gas sensing applications. CrystEngComm 12(11), 3419-3421, DOI: 10.1039/ C0CE00139B.Search in Google Scholar

7. Guo, X., Zhao, Q., Li, R., Pan, H., Guo, X., Yin, A., and Dai, W. (2010). Synthesis of ZnO nanofowers and their wettabilities and photocatalytic properties. Opt Express 18(17): 18401-6. DOI: 10.1364/OE.18.018401.10.1364/OE.18.01840120721234Search in Google Scholar

8. Xi, Y., Song, J., Xu, S., Yang, R., Gao, Z., Hu, C. and Wang, Z. (2009). Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J. Mater. Chem. 19(48), 9260-9264. DOI: 10.1039/B917525C.10.1039/b917525cSearch in Google Scholar

9. Ali, S.M.U., Kashif, M., Ibupoto, Z.H., Fakhar-e-Alam, M., Hashim, U., and Willander, M. (2011). Functionalised zinc oxide nanotube arrays as electrochemical sensors for the selective determination of glucose. Micro & Nano Letters 6(8), 609-613. DOI: 10.1049/ mnl.2011.0310.10.1049/mnl.2011.0310Search in Google Scholar

10. Choopun, S., Hongsith, N., and Wongrat, E. (2012), Metal-oxide nanowires for gas sensors. InTech. DOI: 10.5772/54385. 10.5772/54385Search in Google Scholar

11. Liu, Y., Zhang, Y., Lei, H., Jingwei, S., Hui, C., and Baojun, L. (2012). Growth of wellarrayed ZnO nanorods on thinned silica fiber and application for humidity sensing. Optic Express 20(17). DOI: 10.1364/OE.20.019404.10.1364/OE.20.01940423038583Search in Google Scholar

12. Rahman, M., Ahammad, A. J. S., Jin, J.H., Ahn, S.J., and Lee, J.J. (2010). A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10(5), 4855-4886, DOI: 10.3390/s100504855.10.3390/s100504855329215122399911Search in Google Scholar

13. Nozaki, S., Sarangi, S.N., Uchida, K., and Sahu, S.N. (2013). Hydrothermal growth of zinc oxide nanorods and glucose-sensor application. Soft Nanoscience Letters 3(4A), 23-26. DOI: 10.4236/snl.2013.34A007.10.4236/snl.2013.34A007Search in Google Scholar

14. Fulati, A., Usman Ali, S.M, Riaz, M., Amin, G., Nur, O., and Willander M. (2009). Miniaturized pH sensors based on zinc oxide nanotubes/nanorods. Sensors 9(11), 8911-8923. DOI: 10.3390/s91108911.10.3390/s91108911326062222291545Search in Google Scholar

15. Roza, L., Rahman, M.Y.A., Umar, A.A., and Salleh, M.M. (2015). Direct growth of oriented ZnO nanotubes by self-selective etching at lower temperature for photo-electrochemical (PEC) solar cell application. Journal of Alloys and Compounds 618, 153-158. DOI:10.1016/j.jallcom.2014.08.113.10.1016/j.jallcom.2014.08.113Search in Google Scholar

16. Han, J., Fan, F., Xu, C., Lin, S., Wei, M., Duan, X., and Wang, L. Z. (2010). ZnO nanotube- based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 21(40), 405203 (7pp.). DOI:10.1088/0957-4484/21/40/405203.10.1088/0957-4484/21/40/40520320829568Search in Google Scholar

17. Luoa, L., Lva, G., Lia, B., Hua, X., Jinb, L., Wang, J., and Tang, Y. (2010). Formation of aligned ZnO nanotube arrays by chemical etching and coupling with CdSe for photovoltaic application. Thin Solid Films 518 (18), 5146-5152. DOI:10.1016/j.tsf.2010.03.014.10.1016/j.tsf.2010.03.014Search in Google Scholar

18. Gana, X., Lia, X., Gaoa, X., and Yua, W. (2009). Investigation on chemical etching process of ZnO nanorods toward nanotubes. Journal of Alloys and Compounds 481 (1-2), 397-401. DOI:10.1016/j.jallcom.2009.03.013.10.1016/j.jallcom.2009.03.013Search in Google Scholar

19. Xua, S., Laoa, C. Weintrauba, B., and Wang, Z.L. (2008). Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces J. Mater. Res. 23(8). DOI: http://dx.doi.org/10.1557/JMR.2008.0274.10.1557/JMR.2008.0274Search in Google Scholar

20. Baruah, S., and Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10(1), 013001 (18 pp.). DOI:10.1088/1468-6996/10/1/013001.10.1088/1468-6996/10/1/013001510959727877250Search in Google Scholar

21. Kwon, J., Hong, S., Lee, H., Yeo, J., Lee, S., and Hwan Ko, S. (2013). Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate. Nanoscale Research Letters 8, 489. DOI: 10.1186/1556-276X-8-489.10.1186/1556-276X-8-489384282724252130Search in Google Scholar

22. Meen, T.H., Water, W., Chen, Y.S., Chen, W.R., Ji, L.W., and Huang, C.J. (2007). Growth of ZnO nanorods by hydrothermal method under different temperatures. Electron Devices and Solid-State Circuits, 617-620.Search in Google Scholar

23. Hsu, J.F, Xi, J.J, and Tam, K.H. (2008). Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Adv. Funct. Mater. 18(7), 1020-1030. DOI: 10.1002/ adfm.200701083.10.1002/adfm.200701083Search in Google Scholar

24. Soomro, M.Y., Hussain, I., Bano, N., Jun, Lu, Hultman, L., and Nur, O. (2012). Growth, structural and optical characterization of ZnO nanotubes on disposable-flexible paper substrates by low-temperature chemical method. Journal of Nanotechnology 2012 (01). DOI: 10.1155/2012/251863.10.1155/2012/251863Search in Google Scholar

25. Liu, B., and Zeng, H.C. (2009). Direct growth of enclosed ZnO nanotubes. Nano Res 2 (3), 201-209. DOI 10.1007/s12274-009-9018-7.10.1007/s12274-009-9018-7Search in Google Scholar

26. Akgun, C.M., Kalay, Y.E., and Unalan, H.E. (2012). Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. J. Mater. Res. 27 (11). DOI: http://dx.doi.org/10.1557/jmr.2012.92. 10.1557/jmr.2012.92Search in Google Scholar

27. Wang, Y., and Cui, Z. (2009). Synthesis and photoluminescence of well aligned ZnO nanotube arrays by a simple chemical solution method. Journal of Physics 152. DOI:10.1088/1742-6596/152/1/012021.10.1088/1742-6596/152/1/012021Search in Google Scholar

28. Kwon, J., Hong, S., Lee, H., Yeo, J., Lee, S., and Hwan Ko, S. (2013). Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate. Nanoscale Research Letters 8, 489.10.1186/1556-276X-8-489384282724252130Search in Google Scholar

29. Wang, C., Yin, L., Zhang, L, Xiang, D., and Gao, R. (2010). Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 10, 2088-2106. DOI: 10.3390/s100302088.10.3390/s100302088326446922294916Search in Google Scholar

30. Shabaneh, A.A., Girei, S.H., Arasu, P.T., Rashid, S.A., Yunusa, Z, Mahdi, M.A., Paiman, S., Ahmad, M.Z., and Yaacob, M.H. (2014). Reflectance response of optical fiber coated with carbon nanotubes for aqueous ethanol sensing. IEEE Photonic Journal 6 (6). DOI: 10.1109/JPHOT.2014.2363429.10.1109/JPHOT.2014.2363429Search in Google Scholar

31. Aryaa, S.K., Sahab, S., Ramirez-Vickc, J.E, Gupta, V., Bhansalid, S., and Singhe, S.P. (2012). Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Analytica Chimica Acta 737 (1), 21. DOI:10.1016/j.aca.2012.05.048. 10.1016/j.aca.2012.05.04822769031Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics