Cite

[1] D. L. Jaggard, X. Sun, Scattering from fractally corrugated surfaces, Journal of the Optical society of America A, Vol. 7, No 6, pp. 1131-1139, 1990.Search in Google Scholar

[2] P. Beckmann, A. Spizzichino, The Scattering of electromagnetic waves from rough surfaces, Artech House Inc., 1987.Search in Google Scholar

[3] D. L. Jaggard, A.D. Jaggard, P. Frangos, Fractal electrodynamics: surfaces and superlattices, in Frontiers in Electromagnetics, Edited by Douglas Werner and Raj Mittra, IEEE Press, 2000, pp. 1-47.Search in Google Scholar

[4] F. Berizzi, E. Dalle Mese, G. Pinelli, One dimensional fractal model of the sea surface, IEEE Proc. Radar Sonar Navig., Vol. 146, No 1, pp. 55-64, 1999.10.1049/ip-rsn:19990259Search in Google Scholar

[5] A.K. Sultan - Salem, G.L. Tyler, Validity of the Kirchhoff approximation for electromagnetic wave scattering from fractal surfaces, IEEE Trans. Geosc. Rem. Sensing, Vol. 42, No. 9, pp. 1860-1870, 2004.Search in Google Scholar

[6] M. F. Chen, A. K. Fung, A numerical study of the regions of validity of the Kirchhoff and small perturbation rough surface scattering models, Radio Science, Vol. 23, pp. 163 - 170, 1988.10.1029/RS023i002p00163Search in Google Scholar

[7] E. Jakeman, Scattering by fractals, in Fractals in Physics, pp. 55-60, 1986.10.1016/B978-0-444-86995-1.50011-1Search in Google Scholar

[8] N. Ampilova and I. Soloviev, On digital image segmentation based on fractal and multifractal methods, CEMA’15 Conference Proceedings, pp. 14-17, Sofia, Bulgaria, 2015.Search in Google Scholar

[9] A. Malamou, A. Karakasiliotis, E. Kallitsis, G. Boultadakis, P. Frangos, Application of a fully automatic autofocusing algorithm for post - processing of synthetic aperture radar images based on image entropy minimization, Electronics and Electrical Engineering Journal, Vol. 19, No. 6, pp. 95 - 98, 2013.10.5755/j01.eee.19.6.4573Search in Google Scholar

[10] A. Malamou, C. Pandis, P. Frangos, P. Stefaneas, A. Karakasiliotis, D. Kodokostas, Application of the modified fractal signature method for terrain classification from synthetic aperture radar images, Electronics and Electrical Engineering Journal, Vol. 20, No. 6, pp. 118-121, 2014.10.5755/j01.eee.20.6.7281Search in Google Scholar

[11] S. Savaidis, P. Frangos, D. L. Jaggard and K. Hizanidis, Scattering from fractally corrugated surfaces : an exact approach, Optics Letters, Vol. 20, No. 23, pp. 2357- 2359, 1995.Search in Google Scholar

[12] S. Savaidis, P. Frangos, D. L. Jaggard and K. Hizanidis, Scattering from fractally corrugated surfaces using the extended boundary condition method, Journal of the Optical Society of America A, Vol. 14, No. 2, pp. 475-485, 1997.10.1364/JOSAA.14.000475Search in Google Scholar

[13] D. L. Jaggard, X. Sun, Fractal surface scattering: a generalized Rayleigh solution, Journal of Applied Physics, Vol. 68, No 11, pp. 5456-5462, 1990.Search in Google Scholar

[14] A. Kotopoulis, A. Malamou, G. Pouraimis, E. Kallitsis and P. Frangos, Characterization of rough fractal surfaces from backscattered radar data, ‘Electronicsand Electrical Engineering’ Journal, accepted April 2016. 10.5755/j01.eie.22.6.17226Search in Google Scholar

[15] A. Kotopoulis, G. Pouraimis, A. Malamou, E. Kallitsis, and P. Frangos, ‘Characterization of fractal rough surfaces from backscattered radar data’, CEMA’16, Conference, Athens, Greece, 13-15/10/2016.10.5755/j01.eie.22.6.17226Search in Google Scholar

eISSN:
2451-3113
ISSN:
1843-6722
Language:
English