Open Access

Modeling of sand-water slurry flow through horizontal pipe using CFD


Cite

Antaya, C.L., Adane, K.F.K., Sanders, R.S., 2012. Modeling Concentrated Slurry Pipeline Flows.Proc. ASME. 44755, Volume 1: Symposia, Parts A and B 1659.Search in Google Scholar

Aude, T.C., Thomson, T.L., Wasp, E.J., 1974. Economics of slurry pipeline systems. In: Proc. Hydro transport 3. BHRA Fluid Engineering, Cranfield, Bedford, England, paper K2.Search in Google Scholar

Aude, T.C., Thompson, T.L., Wasp, E.J., 1975. Slurry pipeline system. Oil and Gas Journal, pp.66.Search in Google Scholar

Chen, L., Duan, Y., Pu, W., Zhao, C., 2009. CFD simulation of coal-water slurry flowing in horizontal pipelines. Korean Journal Chemical Engineering, 26, 4, 1144-1154.10.1007/s11814-009-0190-ySearch in Google Scholar

Doron, P., Granica, D., Barnea, D., 1987. Slurry flow in horizontal pipes-experimental and modeling. International Journal of Multiphase Flow, 13, 535-547.10.1016/0301-9322(87)90020-6Search in Google Scholar

Ekambara, K., Sanders, R.S., Nandakumar, K., Masliyah, J.H., 2009. Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX. Ind. Eng. Chem. Res., 48, 8159-8171.10.1021/ie801505zSearch in Google Scholar

Ghanta, K.C., Purohit, N.K., 1999. Pressure drop prediction in hydraulic transport of bi-dispersed particles of coal and copper ore in pipeline. The Canadian Journal of Chemical Engineering, 77, 127-131.10.1002/cjce.5450770121Search in Google Scholar

Gidaspow, D., Bezburuah, R., Ding, J., 1992. Hydrodynamics of circulating fluidized beds, kinetic theory approach in fluidization. In: Proceedings of the 7th Engineering Foundation Conference on Fluidization, pp. 75-82.Search in Google Scholar

Gillies, R.G., Shook, C.A., Wilson, K.C., 1991. An improved two layer model for horizontal slurry pipeline flow. The Canadian Journal of Chemical Engineering, 69, 173-178.10.1002/cjce.5450690120Search in Google Scholar

Gillies R.G., Shook, C.A., 1994. Concentration Distributions of sand slurries in horizontal pipe flow. Particulate Science and Technology: An International Journal, 12, 1, 45-69.10.1080/02726359408906641Search in Google Scholar

Gillies, R.G., Hill, K.B., Mckibben, M.J., Shook, C.A., 1999. Solids transport by laminar Newtonian flows. Powder Technology, 104, 269-277.10.1016/S0032-5910(99)00104-7Search in Google Scholar

Gillies, R.G., Shook, C.A., 2000. Modeling high concentration settling slurry flows. The Canadian Journal of Chemical Engineering, 78, 709-716.10.1002/cjce.5450780413Search in Google Scholar

Gopaliya, M.K., Kaushal, D.R., 2015. Analysis of effect of particle size on various parameters of slurry flow through pipeline using CFD. Particulate Science and Technology: An International Journal, 33, 4, 369-384.10.1080/02726351.2014.971988Search in Google Scholar

Karabelas, A.J., 1977. Vertical distribution of dilute suspensions in turbulent pipe flow. AIChE Journal, 23, 426-434.10.1002/aic.690230404Search in Google Scholar

Kaushal, D.R., Tomita, Y., 2002. Solid concentration profiles and pressure drop in pipeline flow of multisized particulate slurries. International Journal of Multiphase Flow, 28, 1697-1717.10.1016/S0301-9322(02)00047-2Search in Google Scholar

Kaushal, D.R., Tomita, Y., 2003. Comparative study of pressure drop in multisized particulate slurry flow through pipe and rectangular duct. International Journal of Multiphase Flow, 29, 1473-1487.10.1016/S0301-9322(03)00125-3Search in Google Scholar

Kaushal, D.R., Sato, K., Toyota, T., Funatsu, K., Tomita, Y., 2005. Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry. International Journal of Multiphase Flow, 31, 809-823.10.1016/j.ijmultiphaseflow.2005.03.003Search in Google Scholar

Kaushal, D.R., Thinglas, T., Tomita, Y., Kuchii, S., Tsukamoto, H., 2012. CFD modeling for pipeline flow of fine particles at high concentration. International Journal of Multiphase Flow, 43, 85-100.10.1016/j.ijmultiphaseflow.2012.03.005Search in Google Scholar

Krampa-Morlu, F.N., Bergstrom, D.J., Bugg, J.D., Sanders, R.S., Schaan, J., 2004. Numerical simulation of dense coarse particle slurry flows in a vertical pipe. In: 5th International Conference on Multiphase flow, ICMF’04, Yokohama, Japan.Search in Google Scholar

Kumar, U., Mishra, R., Singh, S., Seshadri, V., 2003. Effect of particle gradation on flow characteristics of ash disposal pipelines. Powder Technology, 132, 39-51.10.1016/S0032-5910(03)00045-7Search in Google Scholar

Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Computational Methods in Applied Mechanics & Engineering, 3, 269-289.10.1016/0045-7825(74)90029-2Search in Google Scholar

Lin, C.X., Ebadian, M.A., 2008. A numerical study of developing slurry flow in the entrance region of a horizontal pipe. Computers & Fluids, 37, 965-974.10.1016/j.compfluid.2007.10.008Search in Google Scholar

Ling, J., Skudarnov, P.V., Lin, C.X., Ebadian, M.A., 2003. Numerical investigations of liquid-solid slurry flows in a fully developed turbulent flow region. International Journal of Heat and Fluid Flow, 24, 389-398.10.1016/S0142-727X(03)00018-3Search in Google Scholar

Lun, C.K.K., Savage, S.B., Jeffrey, D.J., Chepurniy, N., 1984. Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flow field. Journal of Fluid Mechanic, 140, 223-256.10.1017/S0022112084000586Search in Google Scholar

Ma, L., Huang, C., Xie, Y., Jiang, J., Tufa, K.Y., Hui, R., 2015. Modeling of erodent particle trajectories in slurry flow. Wear, 334-335, 49-55.10.1016/j.wear.2015.04.013Search in Google Scholar

Mishra, R., Singh, S.N., Seshadri, V., 1998. Improved model for prediction of pressure drop and velocity field in multisized particulate slurry flow through horizontal pipes. Powder Handling and Processing Journal, 10, 279-289.Search in Google Scholar

O’Brien, M.P., 1933. Review of the theory of turbulent flow and its relations to sediment transport. Transaction of the American Geophysical Union 14, 487-491.10.1029/TR014i001p00487Search in Google Scholar

Roco, M.C., Shook, C.A., 1983. Modeling of slurry flow: The effect of particle size. The Canadian Journal of Chemical Engineering, 61, 494-503.10.1002/cjce.5450610402Search in Google Scholar

Roco, M.C., Shook, C.A., 1984. Computational methods for coal slurry pipeline with heterogeneous size distribution. Powder Technology, 39, 159-176.10.1016/0032-5910(84)85034-2Search in Google Scholar

Rouse, H., 1937. Modern conceptions of the mechanics of fluid turbulence. Transactions of ASCE, 102, 463-505.10.1061/TACEAT.0004872Search in Google Scholar

Seshadri, V., 1979. Basic process design. In: Proc. of Workshop on Hydraulic transportation of mineral ores, IIT, Delhi.Search in Google Scholar

Seshadri, V., 1982. Basic process design for a slurry pipeline. In: Proc. The Short Term Course on Design of pipelines for transporting liquid and solid materials, IIT, Delhi.Search in Google Scholar

Seshadri, V., Malhotra, R.C., Sundar, K.S., 1982. Concentration and size distribution of solids in a slurry pipeline. In: Proc. 11th Nat. Conference on Fluid mechanics and fluid power, B.H.E.L., Hyderabad.Search in Google Scholar

Shook, C.A., Daniel, S.M., 1965. Flow of suspensions of solids in pipeline: I. Flow with a stable stationary deposit. The Canadian Journal of Chemical Engineering, 43, 56-72.10.1002/cjce.5450430202Search in Google Scholar

Shook, C.A., Daniel, S.M., Scott, J.A., Holgate, J.P., 1968. Flow of suspensions in pipelines. The Canadian Journal of Chemical Engineering, 46, 238-244.10.1002/cjce.5450460405Search in Google Scholar

Sundqvist, A., Sellgren, A., Addie, G., 1996. Slurry pipeline friction losses for coarse and high density products. Powder Technology, 89, 19-28.10.1016/S0032-5910(96)03149-XSearch in Google Scholar

Wang, J., Zhang, T., Wang, S., 2013a. Heterogeneous ice slurry flow and concentration distribution in horizontal pipes. International Journal of Heat and Fluid Flow, 44, 425-434.10.1016/j.ijheatfluidflow.2013.07.012Search in Google Scholar

Wang, J., Wang, S., Zhang, T., Liang, Y., 2013b. Numerical investigation of ice slurry isothermal flow in various pipes. International Journal of Refrigeration, 36, 70-80.10.1016/j.ijrefrig.2012.08.007Search in Google Scholar

Wasp, E.J., Aude, T.C., Kenny, J.P., Seiter, R.H., Jacques, R.B., 1970. Deposition velocities, transition velocities and spatial distribution of solids in slurry pipelines. In: Proc. Hydrotransport 1, BHRA Fluid Engineering, Coventry, UK, paper H4.2, pp. 53-76.Search in Google Scholar

Wilson, K.C., Clift, R., Sellgren, A., 2002. Operating points for pipelines carrying concentrated heterogeneous slurries. Powder Technology, 123, 19-24.10.1016/S0032-5910(01)00423-5Search in Google Scholar

Wu, D., Yang, B., Liu, Y., 2015. Pressure drop in loop pipe flow of fresh cemented coal gangue-fly ash slurry: Experimental and simulation. Advanced Powder Technology, 26, 920-927.10.1016/j.apt.2015.03.009Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other