Open Access

Biological soil crusts cause subcritical water repellency in a sand dune ecosystem located along a rainfall gradient in the NW Negev desert, Israel


Cite

Aelamanesh, P., Mosaddeghi, M.R., Mahboubi, A.A., Ahrens, B., Sinegani, A.A.S., 2014. Water repellency in calcareous soils under different land uses in Western Iran. Pedosphere, 24, 378–390.10.1016/S1002-0160(14)60024-2Search in Google Scholar

Almog, R., Yair, A., 2007. Negative and positive effects of topsoil biological crusts on water availability along a rainfall gradient in a sandy arid area. Catena, 70, 437–442.10.1016/j.catena.2006.11.012Search in Google Scholar

Bachmann, J., Woche, S.K., Goebel, M.-O., Kirkham, M.B., Horton, R., 2003. Extended methodology for determining wetting properties of porous media: Determining wetting properties of soil. Water Resour. Res., 39, doi: 10.1029/2003WR00214310.1029/2003WR002143Search in Google Scholar

Bachmann, J., Arye, G., Deurer, M., Woche, S.K., Horton, R., Hartge, K.-H., Chen, Y., 2006. Universality of a surface tension—contact-angle relation for hydrophobic soils of different texture. J. Plant Nutr. Soil Sci., 169, 745–753.10.1002/jpln.200622022Search in Google Scholar

Belnap, J., 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process., 20, 3159–3178.10.1002/hyp.6325Search in Google Scholar

Belnap, J., Gillette, D.A., 1998. Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J. Arid Environ., 39, 133–142.10.1006/jare.1998.0388Search in Google Scholar

Belnap, J., Phillips, S.L., Herrick, J.E., Johansen, J.R., 2007. Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: implications for land management. Earth Surf. Process. Landf., 32, 75–84.10.1002/esp.1372Search in Google Scholar

Bisdom, E.B.A., Dekker, L.W., Schoute, J.F.T., 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105–118.10.1016/B978-0-444-81490-6.50013-3Search in Google Scholar

Büdel, B., Veste, M., 2008. Biological crusts. In: Breckle, S.-W., Yair, A., Veste, M. (Eds.): Arid Dune Ecosystems. The Nizzana Sands in the Negev Desert. Springer, Berlin, pp. 149–155.10.1007/978-3-540-75498-5_10Search in Google Scholar

Chamizo, S., Cantón, Y., Lázaro, R., Solé-Benet, A., Domingo, F., 2012. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems, 15, 148–161.10.1007/s10021-011-9499-6Search in Google Scholar

de Blas, E., Almendros, G., Sanz, J., 2013. Molecular characterization of lipid fractions from extremely water-repellent pine and eucalyptus forest soils. Geoderma, 206, 75–84.10.1016/j.geoderma.2013.04.027Search in Google Scholar

Dekker, L.W., Doerr, S.H., Oostindie, K., Ziogas, A.K., Ritsema, C.J., 2001. Water repellency and critical soil water content in a dune sand. Soil Sci. Soc. Am. J., 65, 1667–1674.10.2136/sssaj2001.1667Search in Google Scholar

Diehl, D., 2013. Soil water repellency: Dynamics of heterogeneous surfaces. Colloids Surf. Physicochem. Eng. Asp., 432, 8–18.10.1016/j.colsurfa.2013.05.011Search in Google Scholar

Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev., 51, 33–65.10.1016/S0012-8252(00)00011-8Search in Google Scholar

Drahorad, S.L., Felix-Henningsen, P., 2013. Application of an electronic micropenetrometer to assess mechanical stability of biological soil crusts. J. Plant Nutr. Soil Sci., 176, 904–909.10.1002/jpln.201200291Search in Google Scholar

Drahorad, S.L., Felix-Henningsen, P., Eckhardt, K.-U., Leinweber, P., 2013a. Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert (Israel) along a rainfall gradient. J. Arid Environ., 94, 18–26.10.1016/j.jaridenv.2013.02.006Search in Google Scholar

Drahorad, S.L., Steckenmesser, D., Felix-Henningsen, P., Lichner, Ľ., Rodný, M., 2013b. Ongoing succession of biological soil crusts increases water repellency – a case study on Arenosols in Sekule, Slovakia. Biologia, 68, 1089–1093.10.2478/s11756-013-0247-6Search in Google Scholar

Eldridge, D.J., Zaady, E., Shachak, M., 2000. Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. Catena, 40, 323–336.10.1016/S0341-8162(00)00082-5Search in Google Scholar

Eldridge, D.J., Bowker, M.A., Maestre, F.T., Alonso, P., Mau, R.L., Papadopoulos, J., Escudero, A., 2010. Interactive effects of three ecosystem engineers on infiltration in a semi-arid mediterranean grassland. Ecosystems, 13, 499–510.10.1007/s10021-010-9335-4Search in Google Scholar

Eynard, A., Schumacher, T.E., Lindstrom, M.J., Malo, D.D., Kohl, R.A., 2006. Effects of aggregate structure and organic C on wettability of Ustolls. Soil Tillage Res., 88, 205–216.10.1016/j.still.2005.06.002Search in Google Scholar

Felde, V.J.M.N.L., Peth, S., Uteau-Puschmann, D., Drahorad, S., Felix-Henningsen, P., 2014. Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers. Conserv., 23, 1687–1708.10.1007/s10531-014-0693-7Search in Google Scholar

Fischer, T., Veste, M., Wiehe, W., Lange, P., 2010. Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. Catena, 80, 47–52.10.1016/j.catena.2009.08.009Search in Google Scholar

Fischer, T., Yair, A., Veste, M., Geppert, H., 2013. Hydraulic properties of biological soil crusts on sand dunes studied by 13C-CP/MAS-NMR: A comparison between an arid and a temperate site. Catena, 110, 155–160.10.1016/j.catena.2013.06.002Search in Google Scholar

Graber, E.R., Tagger, S., Wallach, R., 2009. Role of divalent fatty acid salts in soil water repellency. Soil Sci. Soc. Am. J., 73, 541–549.10.2136/sssaj2008.0131Search in Google Scholar

Hagemann, M., Henneberg, M., Felde, V.J.M.N.L., Drahorad, S.L., Berkowicz, S.M., Felix-Henningsen, P., Kaplan, A., 2014. Cyanobacterial diversity in biological soil crusts along a precipitation gradient, Northwest Negev Desert, Israel. Microb. Ecol., doi:10.1007/s00248-014-0533-z10.1007/s00248-014-0533-z25408227Search in Google Scholar

Hajnos, M., Calka, A., Jozefaciuk, G., 2013. Wettability of mineral soils. Geoderma, 206, 63–69.10.1016/j.geoderma.2013.04.019Search in Google Scholar

Hakanpää, J., Paananen, A., Askolin, S., Nakari-Setälä, T., Parkkinen, T., Penttilä, M., Linder, M.B., Rouvinen, J., 2004. Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. The Journal of Biological Chemistry, 279, 534–539.10.1074/jbc.M30965020014555650Search in Google Scholar

Hallett, P.D., 2008. A brief overview of the causes, impacts and amelioration of soil water repellency – a review. Soil Water Res., 3, 21–29.10.17221/1198-SWRSearch in Google Scholar

Hallett, P.D., Young, I.M., 1999. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Eur. J. Soil Sci., 50, 35–40.10.1046/j.1365-2389.1999.00214.xSearch in Google Scholar

Hallett, P.D., Baumgartl, T., Young, I.M., 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Am. J., 65, 184–190.10.2136/sssaj2001.651184xSearch in Google Scholar

Hallett, P.D., Nunan, N., Douglas, J.T., Young, I.M., 2004. Millimeter-scale spatial variability in soil water sorptivity: scale, surface elevation, and subcritical repellency effects. Soil Sci. Soc. Am. J., 68, 352–358.10.2136/sssaj2004.3520Search in Google Scholar

Heusinkveld, B.G., Berkowicz, S.M., Jacobs, A.F.G., Holtslag, A.A.M., Hillen, W.C.A.M., 2006. An automated microlysimeter to study dew formation and evaporation in arid and semiarid regions. J. Hydrometeorol., 7, 825–832.10.1175/JHM523.1Search in Google Scholar

International Organization for Standardization (ISO), 1998. Soil quality -- Determination of particle size distribution in mineral soil material -- Method by sieving and sedimentation. ISO 11277:1998-05-15.Search in Google Scholar

Karnieli, A., Kidron, G.J., Glaesser, C., Ben-Dor, E., 1999. Spectral characteristics of cyanobacteria soil crust in semiarid environments. Remote Sens. Environ., 69, 67–75.10.1016/S0034-4257(98)00110-2Search in Google Scholar

Kidron, G.J., Benenson, I., 2014. Biocrusts serve as biomarkers for the upper 30 cm soil water content. J. Hydrol., 509, 398–405.10.1016/j.jhydrol.2013.11.041Search in Google Scholar

Kidron, G.J., Büdel, B., 2014. Contrasting hydrological response of coastal and desert biocrusts. Hydrol. Process., 28, 361–371.10.1002/hyp.9587Search in Google Scholar

Kidron, G.J., Yaalon, D.H., Vonshak, A., 1999. Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore clogging. Soil Sci., 164, 18–27.10.1097/00010694-199901000-00004Search in Google Scholar

Kidron, G.J., Vonshak, A., Dor, I., Barinova, S., Abeliovich, A., 2010. Properties and spatial distribution of microbiotic crusts in the Negev Desert, Israel. Catena, 82, 92–101.10.1016/j.catena.2010.05.006Search in Google Scholar

Kidron, G.J., Monger, H.C., Vonshak, A., Conrod, W., 2012. Contrasting effects of microbiotic crusts on runoff in desert surfaces. Geomorphology, 139–140, 484–494.10.1016/j.geomorph.2011.11.013Search in Google Scholar

Lamparter, A., Deurer, M., Bachmann, J., Duijnisveld, W.H.M., 2006. Effect of subcritical hydrophobicity in a sandy soil on water infiltration and mobile water content. J. Plant Nutr. Soil Sci., 169, 38–46.10.1002/jpln.200521743Search in Google Scholar

Lamparter, A., Bachmann, J., Deurer, M., Woche, S.K., 2010. Applicability of ethanol for measuring intrinsic hydraulic properies of sand with various water repellency levels. Vadose Zone J., 9, 445–450.10.2136/vzj2009.0079Search in Google Scholar

Leelamanie, D.A.L., Karube, J., Yoshida, A., 2008. Characterizing water repellency indices: Contact angle and water drop penetration time of hydrophobized sand. Soil Sci. Plant Nutr., 54, 179–187.10.1111/j.1747-0765.2007.00232.xSearch in Google Scholar

Letey, J., Carrillo, M.L., Pang, X., 2000. Approaches to characterize the degree of water repellency. J. Hydrol., 231–232, 61–65.10.1016/S0022-1694(00)00183-9Search in Google Scholar

Lichner, L., Hallett, P.D., Feeney, D.S., Ďugová, O., Šír, M., Tesař, M., 2007. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia, 62, 537–541.10.2478/s11756-007-0106-4Search in Google Scholar

Lichner, L., Hallett, P.D., Drongová, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolák, M., 2013. Algae influence the hydrophysical parameters of a sandy soil. Catena, 108, 58–68.10.1016/j.catena.2012.02.016Search in Google Scholar

Littmann, T., Berkowicz, S.M., 2008. The regional climatic setting. In: Breckle, S.-W., Yair, A., Veste, M. (Eds.): Arid Dune Ecosystems. The Nizzana Sands in the Negev Desert. Springer, Berlin, pp. 49–63.10.1007/978-3-540-75498-5_4Search in Google Scholar

Maestre, F.T., Bowker, M.A., Cantón, Y., Castillo-Monroy, A.P., Cortina, J., Escolar, C., Escudero, A., Lázaro, R., Martínez, I., 2011. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J. Arid Environ., 75, 1282–1291.10.1016/j.jaridenv.2010.12.008Search in Google Scholar

Mataix-Solera, J., Doerr, S., 2004. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma, 118, 77–88.10.1016/S0016-7061(03)00185-XSearch in Google Scholar

Mataix-Solera, J., Arcenegui, V., Tessler, N., Zornoza, R., Wittenberg, L., Martínez, C., Caselles, P., Pérez-Bejarano, A., Malkinson, D., Jordán, M.M., 2013. Soil properties as key factors controlling water repellency in fire-affected areas: Evidences from burned sites in Spain and Israel. Catena, 108, 6–13.10.1016/j.catena.2011.12.006Search in Google Scholar

Mirbabaei, S.M., Shahrestani, M.S., Zolfaghari, A., Abkenar, K.T., 2013. Relationship between soil water repellency and some of soil properties in northern Iran. Catena, 108, 26–34.10.1016/j.catena.2013.02.013Search in Google Scholar

Nadav, I., Tarchitzky, J., Chen, Y., 2013. Induction of soil water repellency following irrigation with treated wastewater: effects of irrigation water quality and soil texture. Irrig. Sci., 31, 385–394.10.1007/s00271-011-0316-ySearch in Google Scholar

Orfánus, T., Bedrna, Z., Lichner, Ľ., Hallett, P.D., Kňava, K., Sebíň, M., 2008. Spatial variability of water repellency in pine forest soil. Soil Water Res., 3, 123–129.10.17221/11/2008-SWRSearch in Google Scholar

Rillig, M.C., 2005. A connection between fungal hydrophobins and soil water repellency? Pedobiologia, 49, 395–399.10.1016/j.pedobi.2005.04.004Search in Google Scholar

Rodríguez-Caballero, E., Cantón, Y., Chamizo, S., Afana, A., Solé-Benet, A., 2012. Effects of biological soil crusts on surface roughness and implications for runoff and erosion. Geomorphology, 145–146, 81–89.10.1016/j.geomorph.2011.12.042Search in Google Scholar

Rodríguez-Caballero, E., Cantón, Y., Chamizo, S., Lázaro, R., Escudero, A., 2013. Soil loss and runoff in semiarid ecosystems: a complex interaction between biological soil crusts, micro-topography, and hydrological drivers. Ecosystems, 16, 529–546.10.1007/s10021-012-9626-zSearch in Google Scholar

Schacht, K., Gönster, S., Jüschke, E., Chen, Y., Tarchitzky, J., Al-Bakri, J., Al-Karablieh, E., Marschner, B., 2011. Evaluation of soil sensitivity towards the irrigation with treated wastewater in the Jordan River Region. Water, 3, 1092–1111.10.3390/w3041092Search in Google Scholar

Schacht, K., Chen, Y., Tarchitzky, J., Lichner, L., Marschner, B., 2014. Impact of treated wastewater irrigation on water repellency of Mediterranean soils. Irrig. Sci., 32, 369–378.10.1007/s00271-014-0435-3Search in Google Scholar

Simkovic, I., Dlapa, P., Doerr, S.H., Mataix-Solera, J., Sasinkova, V., 2008. Thermal destruction of soil water repellency and associated changes to soil organic matter as observed by FTIR spectroscopy. Catena, 74, 205–211.10.1016/j.catena.2008.03.003Search in Google Scholar

Tsoar, H., 2008. Land use and its effect on the mobilization and stabilization of the North-Western Negev sand dunes. In: Breckle, S.-W., Yair, A., Veste, M. (Eds.): Arid Dune Ecosystems. The Nizzana Sands in the Negev Desert. Springer, Berlin, pp. 79–89.10.1007/978-3-540-75498-5_6Search in Google Scholar

Varela, M.E., Benito, E., de Blas, E., 2005. Impact of wildfires on surface water repellency in soils of northwest Spain. Hydrol. Process., 19, 3649–3657.10.1002/hyp.5850Search in Google Scholar

Verrecchia, E., Yair, A., Kidron, G.J., Verrecchia, K., 1995. Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, north-western Negev Desert, Israel. J. Arid Environ., 29, 427–437.10.1016/S0140-1963(95)80015-8Search in Google Scholar

Veste, M., Littmann, T., Breckle, S.-W., Yair, A., 2001. The role of biological soil crusts on desert sand dunes of the north-western Negev (Israel). In: Breckle, S.-W., Veste, M., Wucherer, W. (Eds.): Sustainable Land-Use in Deserts. Springer, Heidelberg-New York-Tokyo, pp. 357–367.10.1007/978-3-642-59560-8_38Search in Google Scholar

Veste, M., Breckle, S.-W., Eggert, K., Littmann, T., 2011. Vegetation pattern in arid sand dunes controlled by biological soil crusts along a climatic gradient in the Northern Negev desert. Basic Appl. Dryland Res., 5, 1–16.10.1127/badr/5/2011/1Search in Google Scholar

Vogelmann, E.S., Reichert, J.M., Prevedello, J., Consensa, C.O.B., Oliveira, A.É., Awe, G.O., Mataix-Solera, J., 2013. Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma, 209–210, 177–187.10.1016/j.geoderma.2013.06.019Search in Google Scholar

Walker, C., Lin, H.S., Fritton, D.D., 2006. Is the tension beneath a tension infiltrometer what we think it is? Vadose Zone J., 5, 860–866.10.2136/vzj2005.0096Search in Google Scholar

Woche, S.K., Goebel, M.-O., Kirkham, M.B., Horton, R., Van der Ploeg, R.R., Bachmann, J., 2005. Contact angle of soils as affected by depth, texture, and land management. Eur. J. Soil Sci., 56, 239–251.10.1111/j.1365-2389.2004.00664.xSearch in Google Scholar

Yair, A., 1990. Runoff generation in a sandy area - The Nizzana sands, Western Negev, Israel. Earth Surf. Process. Landf., 15, 597–609.10.1002/esp.3290150703Search in Google Scholar

Yair, A., Almog, R., Veste, M., 2011. Differential hydrological response of biological topsoil crusts along a rainfall gradient in a sandy arid area: Northern Negev desert, Israel. Catena, 87, 326–333.10.1016/j.catena.2011.06.015Search in Google Scholar

Young, I.M., Feeney, D.S., O’Donnell, A.G., Goulding, K.W.T., 2012. Fungi in century old managed soils could hold key to the development of soil water repellency. Soil Biol. Biochem., 45, 125–127.10.1016/j.soilbio.2011.10.007Search in Google Scholar

Zaady, E., Katra, I., Yizhaq, H., Kinast, S., Ashkenazy, Y., 2014. Inferring the impact of rainfall gradient on biocrusts’ developmental stage and thus on soil physical structures in sand dunes. Aeolian Res., 13, 81–89.10.1016/j.aeolia.2014.04.002Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other