Open Access

What Is New in Critical Congenital Heart Defects?


Cite

1. Liu H, Zhou J, Feng QL, et al. Fetal echocardiography for congenital heart disease diagnosis: a meta-analysis, power analysis and missing data analysis. Eur J Prev Cardiol. 2015;22:1531-1547. doi: 10.1177/2047487314551547.10.1177/204748731455154725258423Open DOISearch in Google Scholar

2. Familiari A, Morlando M, Khalil AA, et al. Risk factor for coarctation of the aorta on prenatal ultrasound: a systemic review and meta-analysis. Circulation. 2017;136:24. https://doi.org/10.1161/CIRCULATIONAHA.116.024068.10.1161/CIRCULATIONAHA.116.02406828034902Open DOISearch in Google Scholar

3. Mărginean C, Mărginean CO, Muntean I, Togănel R, Voidăzan S, Gozar L. The role of ventricular disproportion, aortic and ductal isthmus ultrasound measurements for the diagnosis of fetal aortic coarctation, in the third trimester of pregnancy. Med Ultrason. 2015;17:475-481. doi: 10.11152/mu.2013.2066.174.rvd.10.11152/mu.2013.2066.174.rvd26649342Open DOISearch in Google Scholar

4. Peterson RE, Levi DS, Williams RJ, Lai WW, Sklansky MS, Drant S. Echocardiographic predictors of outcome in fetuses with pulmonary atresia with intact ventricular septum. J Am Soc Echocardiogr. 2006;19:1393-1400. doi: 10.1016/j.echo.2006.05.021.10.1016/j.echo.2006.05.02117098143Open DOISearch in Google Scholar

5. Salvin JW, McElhinney DB, Colan SD, et al. Fetal tricuspid valve size and growth as predictors of outcome in pulmonary atresia with intact ventricular septum. Pediatrics. 2006;118:e415-e420. doi: 10.1542/peds.2006-0428.10.1542/peds.2006-042816882782Open DOISearch in Google Scholar

6. Moon-Grady AJ, Morris SA, Belfort M, et al. International Fetal Cardiac Intervention Registry: A Worldwide Collaborative Description and Preliminary Outcomes. JACC 2015;66:388-399. doi: 10.1016/j.jacc.2015.05.037.10.1016/j.jacc.2015.05.03726205597Open DOISearch in Google Scholar

7. Alwi M. Management algorithm in pulmonary atresia with intact ventricular septum. Catheter Cardiovasc Interv. 2006;67:679-686. doi: 10.1002/ccd.20672.10.1002/ccd.2067216572430Open DOISearch in Google Scholar

8. Suteu CC, Muntean I, Benedek T, Togănel R. Giant dissecting ventricular septal haematoma associated with critical congenital heart disease. Interactive cardiovascular and thoracic surgery. 2016;23:837-838. doi: 10.1093/icvts/ivw223.10.1093/icvts/ivw22327365006Search in Google Scholar

9. Dodge-Khatami A, Ott S, Di Bernardo S, Berger F. Carotidsubclavian artery index: new echocardiographic index to detect coarctation in neonates and infants. Ann Thorac Surg. 2005;80:1652-1621. doi: 10.1016/j.athoracsur.2005.04.041.10.1016/j.athoracsur.2005.04.04116242433Open DOISearch in Google Scholar

10. Mivelaz Y, Di Bernardo S, Meijboom EJ, Sekarski N. Validation of two echocardiographic indexes to improve the diagnosis of complex coarctations. Eur J Cardiothorac Surg. 2008;34:1051-1056. doi: 10.1016/j.ejcts.2008.07.036.10.1016/j.ejcts.2008.07.03618824366Search in Google Scholar

11. Lu CW, Wang JK, Chang CI, et al. Noninvasive diagnosis of aortic coarctation in neonates with patent ductus arteriosus. J Pediatr. 2006;148:217-221. doi: 10.1016/j.jpeds.2005.09.036.10.1016/j.jpeds.2005.09.036Open DOISearch in Google Scholar

12. Muntean I, Toma D, Togănel R. Predictors of Inadequate Mixing in Transposition of the Great Arteries — a Critical Neonatal Condition. Journal of Cardiovascular Emergencies. 2017;3:181-187. doi: 10.1515/jce-2017-0024.10.1515/jce-2017-0024Open DOISearch in Google Scholar

13. Graziano JN, Heidelberger KP, Ensing GJ, Gomez CA, Ludomirsky A. The influence of a restrictive atrial septal defect on pulmonary vascular morphology in patients with hypoplastic left heart syndrome. Pediatr Cardiol. 2002;23:146-151.10.1007/s00246-001-0038-7Open DOISearch in Google Scholar

14. Canter CE, Moorehead S, Huddleston CB, Spray TL. Restrictive atrial septal communication as a determinant of outcome of cardiac transplantation for hypoplastic left heart syndrome. Circulation. 1993;88:II456-II460.Search in Google Scholar

15. Dash PK, Satpathy M. Atrial septal defect (secundum type). In: Sathpathy M, Mishra BR. Clinical Diagnosis of Congenital heart disease. Jaypee/The Health Sciences Publisher/New Delhi, 2015; p. 76-84.Search in Google Scholar

16. Kuhn MA, Larsen RL, Mulla NF, Jofnston JK, Chinnock RE, Bailey LL. Outcome of infants with hypoplastic left heart syndrome who undergo atrial septostomy before heart transplantation. Am J Cardiol. 2000;85:124-127.10.1016/S0002-9149(99)00624-4Search in Google Scholar

17. Pignatelli RH, Ghazi P, Reddy SC, et al. Abnormal Myocardial Strain Indices in Children Receiving Anthracycline Chemotherapy. Pediatr Cardiol. 2015;36:1610-1616. doi: 10.1007/s00246-015-1203-8.10.1007/s00246-015-1203-826049414Open DOISearch in Google Scholar

18. Jo WH, Eun LY, Jung JW, Choi JY, Gang SW. Early Marker of Myocardial Deformation in Children with Duchenne Muscular Dystrophy Assessed Using Echocardiographic Myocardial Strain Analysis. Yonsei Med J. 2016;57:900-904. doi: 10.3349/ymj.2016.57.4.900.10.3349/ymj.2016.57.4.900495146627189283Open DOISearch in Google Scholar

19. Van Huis M, Schoenmaker NJ, Groothoff JW, et al. Impaired longitudinal deformation measured by speckle-tracking echocardiography in children with end-stage renal disease. Pediatr Nephrol. 2016;31:1499-1508. doi: 10.1007/s00467-016-3362-0.10.1007/s00467-016-3362-0494396927189482Open DOISearch in Google Scholar

20. Muntean I, Benedek T, Melinte M, Suteu C, Togănel R. Deformation pattern and predictive value of right ventricular longitudinal strain in children with pulmonary arterial hypertension. Cardiovasc Ultrasound. 2016;14:27. doi: 10.1186/s12947-016-0074-3.10.1186/s12947-016-0074-3496680627473461Open DOISearch in Google Scholar

21. Barbosa JA, Mota CC, Simoes E, Silva AC, Nunes MC, Barbosa MM. Assessing pre-clinical ventricular dysfunction in obese children and adolescents: the value of speckle tracking imaging. Eur Heart J Cardiovasc Imaging. 2013;14:882-889. doi: 10.1093/ehjci/jes294.10.1093/ehjci/jes29423291394Open DOISearch in Google Scholar

22. Simpson J, Lopez L, Acar P, et al. Three-dimensional Echocardiography in Congenital Heart Disease: An Expert Consensus Document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;30:1-27. doi: 10.1016/j.echo.2016.08.022.10.1016/j.echo.2016.08.02227838227Open DOISearch in Google Scholar

23. Richards AA, Garg V. Genetics of congenital heart disease. Curr Cardiol Rev. 2010;6:91-97. doi: 10.2174/157340310791162703.10.2174/157340310791162703289208121532774Open DOISearch in Google Scholar

24. Muntean I, Togănel R, Benedek T. Genetics of Congenital Heart Disease: Past and Present. Biochem Genet. 2017;55:105-123. doi:10.1007/s10528-016-9780-7.10.1007/s10528-016-9780-727807680Open DOISearch in Google Scholar

25. Kuehl K, Loffredo C, lammer EJ, Iovannisci DM, Shaw GM. Association of Congenital Cardiovascular Malformations With 33 Single Nucleotide Polymorphisms of Selected Cardiovascular Disease-Related Genes. Birth Defects Res A Clin Mol Teratol. 2010;88:101-110. doi: 10.1002/bdra.20630.10.1002/bdra.20630285741119764075Open DOISearch in Google Scholar

26. Togănel R, Muntean I, Duicu C, Făgărăşan A, Gozar L, Bănescu C. The role of eNOS and AGT gene polymorphisms in secondary pulmonary arterial hypertension in Romanian children with congenital heart disease. Rev Romana Med Lab. 2013;21:267-274. doi: 10.2478/rrlm-2013-0031.10.2478/rrlm-2013-0031Open DOISearch in Google Scholar

27. Postma AV, Bezzina CR, Christoffels VM. Genetics of congenital heart disease: the contribution of the noncoding regulatory genome. J Hum Genet. 2016;61:13-19. doi: 10.1038/jhg.2015.98.10.1038/jhg.2015.9826223183Open DOISearch in Google Scholar

28. Smith T, Rajakaruna C, Caputo M, Emanueli C. MicroRNAs in congenital heart disease. Ann Transl Med. 2015;3:333. doi: 10.3978/j.issn.2305-5839.2015.12.25.10.3978/j.issn.2305-5839.2015.12.25469099126734643Open DOISearch in Google Scholar

eISSN:
2457-5518
Language:
English