Open Access

Review. Automatic Segmentation Techniques of the Coronary Artery Using CT Images in Acute Coronary Syndromes


Cite

1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics - 2012 update: a report from the American Heart Association. Circulation. 2012;125:e2-e220. doi: 10.1161/ CIR.0b013e31823ac046.Search in Google Scholar

2. World Health Organization, Cardiovascular disease (CVDs), 2016. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/#Search in Google Scholar

3. Choy SY, Mintz GS. What have we learned about plaque rupture in acute coronary syndromes? Curr Cardiol Rep. 2010;12:338-343. doi: 10.1007/s11886-010-0113-x.Search in Google Scholar

4. Tominaga J, Fukunaga Y, Abelardo E, Nagafuchi A. Defining the function of beta-catenin tyrosine phosphorylation in cadherin-mediated cell-cell adhesion. Genes Cells. 2008;13:67-77. doi: 10.1111/j.1365-2443.2007.01149.x.Search in Google Scholar

5. Cheruvu PK, Finn AV, Gardner C, et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol. 2007;50:940-949. doi: 10.1016/j.jacc.2007.04.086.Search in Google Scholar

6. Saybolt MD, Lilly SM, Patel D, et al. The vulnerable artery: early and rapid deposition of lipid in coronary arteries is associated with subsequent development of thin-cap fibroatheromas. EuroIntervention. 2016;11:e1612-e1618. doi: 10.4244/EIJV11I14A312.Search in Google Scholar

7. Stary HC, Chandler AB, Glagov S, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1994;89:2462-2478.10.1161/01.CIR.89.5.2462Search in Google Scholar

8. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30:1282-1292. doi: 10.1161/ATVBAHA.108.179739.Search in Google Scholar

9. Bourantas CV, Garcia-Garcia HM, Farooq V, et al. Clinical and angiographic characteristics of patients likely to have vulnerable plaques: analysis from the PROSPECT study. JACC Cardiovasc Imaging. 2013;6:1263-1272. doi: 10.1016/j. jcmg.2013.04.015.Search in Google Scholar

10. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852-1866. doi: 10.1161/CIRCRESAHA.114.30272.Search in Google Scholar

11. Schaar JA, Muller JE, Falk E, et al. Terminology for highrisk and vulnerable coronary artery plaques. Eur Heart J. 2004;25:1077-1082. doi:10.1016/j.ehj.2004.01.002.Search in Google Scholar

12. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105:939-943.10.1161/hc0802.10432711864922Search in Google Scholar

13. Ota H, Magalhaes MA, Torguson R, et al. The influence of lipid-containing plaque composition assessed by nearinfrared spectroscopy on coronary lesion remodelling. Eur Heart J Cardiovasc Imaging. 2016;17:821-831. doi: 10.1093/ ehjci/jev221.Search in Google Scholar

14. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011; 12:204-212. doi: 10.1038/ ni.2001.Search in Google Scholar

15. Newby A. Metalloproteinases and Vulnerable Atherosclerotic Plaques. Trends Cardiovasc Med. 2010;17:253-258. doi: 10.1016/j.tcm.2007.09.001.Search in Google Scholar

16. Taruya A, Tanaka A, Nishiguchi T, et al. Vasa vasorum restructuring in human atherosclerotic plaque vulnerability: a clinical optical coherence tomography study. J Am Coll Cardiol. 2015;65:2469-2477. doi: 10.1016/j.jacc.2015.04.020.Search in Google Scholar

17. Yokoya K, Takatsu H, Suzuki T, et al. Process of progression of coronary artery lesions from mild or moderate stenosis to moderate or severe stenosis: a study based on four serial coronary arteriograms per year. Circulation. 1999;100:903-909.10.1161/01.CIR.100.9.90310468519Search in Google Scholar

18. Sakaguchi M, Hasegawa T, Ehara S, et al. New insights into spotty calcification and plaque rupture in acute coronary syndrome: an optical coherence tomography study. Heart Vessels. 2016;31:1915-1922. Doi: 10.1007/s00380-016-0820-3.10.1007/s00380-016-0820-326945869Search in Google Scholar

19. Jia H, Dai J, Hou J, et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). Eur Heart J. 2016;38:792-800. doi: 10.1093/ eurheartj/ ehw381.Search in Google Scholar

20. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852-1866. doi: 10.1161/CIRCRESAHA.114.302721.Search in Google Scholar

21. Stefanidis C, Antoniou C, Tsiachris D, Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc. 2017;6:e005543. doi: 10.1161/JAHA.117.005543.Search in Google Scholar

22. Thondapu V, Bourantas C, Foin N, et al. Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. Eur Heart J. 2017;38:81-92. doi:10.1093/eurheartj/ehv689.Search in Google Scholar

23. McDaniel M, Galbraith E, Jeroudi A, et al. Localization of culprit lesions in coronary arteries of patients with STsegment elevation myocardial infarctions: relation to bifurcations and curvatures. Am Heart J. 2011;161:508-515. doi: 10.1016/j.ahj.2010.11.005.Search in Google Scholar

24. Chiu J, Chien S. Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives. Physiol Rev. 2011;91:327-387. doi: 10.1152/ physrev.00047.2009.Search in Google Scholar

25. Koskinas K, Chatzizisis Y, Baker A, Edelman E, Stone P, Feldman L. The role of low endothelial shear stress in the conversion of atherosclerotic lesions from stable to unstable plaque. Curr Opin Cardiol. 2009;24:580-590. doi: 10.1097/ HCO.0b013e328331630b.Search in Google Scholar

26. Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005;85:9-23. doi: 10.1038/labinvest.3700215.Search in Google Scholar

27. Chen Z, Peng C, Cui X, LiY S, Chien S, Shyy J. Shear stress, SIRT 1, and vascular homeostasis. Proc Natl Acad Sci USA. 2010;107:10268-10273. doi: 10.1073/pnas.1003833107.Search in Google Scholar

28. Gambillara V, Montorzi G, Haziza-Pigeon C, Stergiopulos N, Silacci P. Arterial wall response to ex vivo exposure to oscillatory shear stress. J Vasc Res. 2005;42:535-544. doi: 10.1159/000088343.Search in Google Scholar

29. Sucosky P, Balachandran K, Elhammali A, Jo H, Yoganathan AP. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4and TGF-beta1-dependent pathway. Arterioscler Thromb Vasc Biol. 2009;29:254-260. doi: 10.1161/ATVBAHA.108.176347.Search in Google Scholar

30. Gimbrone MA, Topper JN, Nagel T, Anderson KR, Garcia- Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann NY Acad Sci. 2000;902:230-240.10.1111/j.1749-6632.2000.tb06318.x10865843Search in Google Scholar

31. Samady H, Eshtehardi P, McDaniel MC, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 2011;124:779-788. doi: 10.1161/ CIRCULATIONAHA.111.021824.Search in Google Scholar

32. Dancu MB, Berardi DE, Vanden Heuvel JP, Tarbell JM. Asynchronous shear stress and circumferential strain reduces endothelial NO synthase and cyclooxygenase-2 but induces endothelin-1 gene expression in endothelial cells. Arterioscler Thromb Vasc Biol. 2004;24:2088-2094. doi: 10.1161/01.ATV.0000143855.85343.0e.Search in Google Scholar

33. Gijsen FJH, Mastik F, Schaar JA, et al. High shear stress induces a strain increase in human coronary plaques over a 6-month period. EuroIntervention. 2011;7:121-127. doi: 10.4244/EIJV7I1A20.Search in Google Scholar

34. Wang Y, Qiu J, Luo S, et al. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomater. 2016;3:257-267. doi: 10.1093/ rb/rbw021.Search in Google Scholar

35. Kramer M, Rittersma S, de Winter R, et al. Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. J Am Coll Cardiol. 2010;55:122-132. doi: 10.1016/j.jacc.2009.09.007.Search in Google Scholar

36. Slager CJ, Wentzel JJ, Gijsen FJ, et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Clin Pract Cardiovasc Med. 2005;2:401-407.10.1038/ncpcardio027416119702Search in Google Scholar

37. Wentzel JJ, Chatzizisis YS, Gijsen FJ, et al. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res. 2012;96:234-243. doi: 10.1093/cvr/ cvs217.Search in Google Scholar

38. Chung WB, Hamburg NM, Holbrook M, et al. The brachial artery remodels to maintain local shear stress despite the presence of cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2009;29:606-612. doi: 10.1161/ATVBAHA.108.181495.Search in Google Scholar

39. Freidja ML, Toutain B, Caillon A, et al. Heme oxygenase 1 is differentially involved in blood flow-dependent arterial remodeling: role of inflammation, oxidative stress, and nitric oxide. Hypertension. 2011;58:225-231. doi: 10.1161/ HYPERTENSIONAHA.111.170266.Search in Google Scholar

40. Benedek T, Mester A, Benedek A, Rat N, Opincariu D, Chițu M. Assessment of Coronary Plaque Vulnerability in Acute Coronary Syndromes using Optical Coherence Tomography or Intravascular Ultrasound. A systematic Review. Journal of Cardiovascular Emergencies. 2016;2:173-184. doi: 10.1515/ jce-2016-0028.Search in Google Scholar

41. Sinclair H, Veerasamy M, Bourantas C, et al. The role of virtual histology intravascular ultrasound in the identification of coronary artery plaque vulnerability in acute coronary syndromes. Cardiol Rev. 2016;24:303-309. doi: 10.1097/ CRD.0000000000000100.Search in Google Scholar

42. Calvert PA, Obaid DR, O’Sullivan M, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc Imaging. 2011;4:894-901. doi: 10.1016/j.jcmg.2011.05.005.Search in Google Scholar

43. Sathyanarayana S, Carlier S, Li W, Thomas L. Characterisation of atherosclerotic plaque by spectral similarity of radiofrequency intravascular ultrasound signals. EuroIntervention. 2009;5:133-139.10.4244/EIJV5I1A21Search in Google Scholar

44. Jang IK. Optical Coherence Tomography or Intravascular Ultrasound? JACC: Cardiovascular Interventions. 2011;4:492494. doi: 10.1016/j.jcin.2011.02.004.Search in Google Scholar

45. Finn AV, Chandrashekhar Y, Narula J. Vulnerable plaques: from PROSPECT to prospects... JACC Cardiovasc Imaging. 2012;5:334-336. doi: 10.1016/j.jcmg.2012.02.004.Search in Google Scholar

46. Toutouzas K, Synetos A, Stefanadi E, et al. Correlation between morphologic characteristics and local temperature differences in culprit lesions of patients with symptomatic coronary artery disease. J Am Coll Cardiol. 2007;49:2264-2271. doi: 10.1016/j.jacc.2007.03.026.Search in Google Scholar

47. Madder RD, Goldstein JA, Madden SP, et al. Detection by nearinfrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2013;6:838-846. doi: 10.1016/j.jcin.2013.04.012.Search in Google Scholar

48. Ughi GJ, Wang H, Gerbaud E, et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and nearinfrared autofluorescence imaging. JACC Cardiovasc Imaging. 2016;9:1304-1314.10.1016/j.jcmg.2015.11.020501078926971006Search in Google Scholar

49. Matter C, Stuber M, Nahrendorf M. Imaging of the unstable plaque: how far have we got? Eur Heart J. 2009;30:2566-2574. doi: 10.1093/eurheartj/ehp419.Search in Google Scholar

50. Rodriguez-Granillo GA, Carrascosa P, Bruining N, Waksman R, Garcia-Garcia HM. Defining the non-vulnerable and vulnerable patients with computed tomography coronary angiography: evaluation of atherosclerotic plaque burden and composition. Eur Heart J Cardiovasc Imaging. 2016;17:481-491. doi: 10.1093/ehjci/jew012.Search in Google Scholar

51. Achenbach S, Boehmer K, Pflederer T, et al. Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J Cardiovasc Comput Tomogr. 2010;4:110-115. doi: 10.1016/j. jcct.2010.01.013.Search in Google Scholar

52. Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 2012;199:S9- S15. doi: 10.2214/AJR.12.9121.Search in Google Scholar

53. Voros S, Rinehart S, Qian Z, et al. Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and metaanalysis. JACC Cardiovasc Imaging. 2011;4:537-548. doi: 10.1016/j.jcmg.2011.03.006.Search in Google Scholar

54. Motoyama S, Ito H, Sarai M, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term followup. J Am Coll Cardiol. 2015;66:337-346. doi: 10.1016/j. jacc.2015.05.069.Search in Google Scholar

55. Li ZX, Zhang YT, Liu GZ, Shao HY, Li WM, Tang XL. A robust coronary artery identification and centerline extraction method in angiographies. Biomed Sign Proc Contr. 2015;16:1-8. http://dx.doi.org/10.1016/j.bspc.2014.09.015.10.1016/j.bspc.2014.09.015Search in Google Scholar

56. Benedek T, Gyöngyösi M, Benedek I. Multislice computed tomographic coronary angiography for quantitative assessment of culprit lesions in acute coronary syndromes. Can J Cardiol. 2013;29:364-371. doi: 10.1016/j.cjca.2012.11.004.Search in Google Scholar

57. Choi BJ, Kang DK, Tahk SJ, et al. Comparison of 64-slice multidetector computed tomography with spectral analysis of intravascular ultrasound backscatter signals for characterizations of noncalcified coronary arterial plaques. Am J Cardiol. 2008;102:988-993. doi: 10.1016/j. amjcard.2008.05.060.Search in Google Scholar

58. Motoyama S, Masayoshi S, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49-57. doi: 10.1016/j. jacc.2009.02.068.Search in Google Scholar

59. Kroener E, van Velzen J, Boogers M, et al. Positive remodeling on coronary computed tomography as a marker for plaque vulnerability on virtual histology intravascular ultrasound. Am J Cardiol. 2011;107:1725-1729. doi: 10.1016/j. amjcard.2011.02.337.Search in Google Scholar

60. Maurovich-Horvat P, Schlett CL, Alkadhi H, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging. 2012;5:1243-1252. doi: 10.1016/j.jcmg.2012.03.019.Search in Google Scholar

61. Collin J, Gossl M, Matsuo Y, et al. Osteogenic monocytes within the coronary circulation and their association with plaque vulnerability in patients with early atherosclerosis. Int J Cardiol. 2015;181:57-64. doi: 10.1016/j.ijcard.2014.11.156.Search in Google Scholar

62. Thomsen C, Abdulla J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: a systematic review and metaanalysis. Eur Heart J Cardiovasc Imaging. 2016;17:120-129. doi: 10.1093/ ehjci/jev325.Search in Google Scholar

63. Hou ZH, Lu B, Gao Y, et al. Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients. JACC Cardiovasc Imaging. 2012;5:990-999. doi: 10.1016/j.jcmg.2012.06.006.Search in Google Scholar

64. Mester A, Chitu M, Rat N, et al. CT Determination of Fractional Flow Reserve in Coronary Lesions. Journal of Interdisciplinary Medicine. 2016;1:237-241. doi: 10.1515/jim-2016-0070.Search in Google Scholar

65. Norgaard B, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol. 2014;63:1145-1155. doi: 10.1016/j.jacc.2013.11.043.Search in Google Scholar

66. Orzan M, Stanescu A, Nyulas T, et al. Transluminal Attenuation Gradient for the Noninvasive Assessment of Functional Significance in Coronary Artery Stenoses. Journal of Interdisciplinary Medicine. 2016;1:267-270. doi: 10.1515/ jim-2016-0074.Search in Google Scholar

67. Brown AJ, Teng Z, Evans PC, Gillard JH, Samady H, Bennett MR. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol. 2016;13:210-220. doi: 10.1038/nrcardio.2015.203.Search in Google Scholar

68. Ohayon J, Finet G, Le Floc’h S, et al. Biomechanics of atherosclerotic coronary plaque: site, stability and in vivo elasticity modeling. Ann Biomed Eng. 2014;42:269-279. doi: 10.1007/s10439-013-0888-1.Search in Google Scholar

69. Walsh MT, Cunnane EM, Mulvihill JJ, Akyildiz AC, Gijsen FJ, Holzapfel GA. Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques. J Biomech. 2014;47:793-804. doi: 10.1016/j.jbiomech.2014.01.017.Search in Google Scholar

70. Huang X, Yang C, Zheng J, et al. 3D MRI-based multicomponent thin layer structure only plaque models for atherosclerotic plaques. J Biomech. 2016;49:2726-2733. doi: 10.1016/j.jbiomech.2016.06.002.Search in Google Scholar

71. Zhou A, Chan H, Chughtai A, et al. Automated coronary artery tree extraction in coronary CT angiography using a multiscale enhancement and dynamic balloon tracking (MSCAR-DBT) method. Comput Med Imaging Graph. 2012;36:1-10. doi: 10.1016/j.compmedimag.2011.04.001.Search in Google Scholar

72. Han D, Shim H, Jeon B, et al. Automatic Coronary Artery Segmentation Using Active Search for Branches and Seemingly Disconnected Vessel Segments from Coronary CT Angiography. PLoS One. 2016;11:e0156837. doi: 10.1371/ journal.pone.0156837.Search in Google Scholar

73. Truc PTH, Khan AU, Lee YK, Lee SY, Kim TS. Vessel enhancement filter using directional filter bank. Comput Vis Image Understand. 2009;113:101-112. http://dx.doi.org/10.1016/j.cviu.2008.07.009.10.1016/j.cviu.2008.07.009Search in Google Scholar

74. Cetin S, Demir A, Yezzi A, Degertekin M, Unal G. Vessel tractography using an intensity based tensor model with branch detection. IEEE Trans Med Imag. 2013;32:348-363. doi: 10.1109/TMI.2012.2227118.Search in Google Scholar

75. Cetin S, Unal G. A higher-order tensor vessel tractography for segmentation of vascular structures. IEEE Trans Med Imag. 2015;34:2172-2185. doi: 10.1109/TMI.2015.2425535.Search in Google Scholar

76. Becker C, Rigamonti R, Lepetit V, Fua P. Supervised feature learning for curvilinear structure segmentation. Med Image Comput Comput Assist Interv. 2013;16:526-533.10.1007/978-3-642-40811-3_6624505707Search in Google Scholar

77. Su R, Sun CM, Pham TD. Junction detection for linear structures based on Hessian, correlation and shape information. Patt Recogn. 2012;45:3695-3706. http://dx.doi.org/10.1016/j.patcog.2012.04.013.10.1016/j.patcog.2012.04.013Search in Google Scholar

78. Wang S, Wu JH, Wei MQ, Ma X. Robust curve skeleton extraction for vascular structures. Graph Models. 2012;74:109-120. http://dx.doi.org/10.1016/j.gmod.2012.03.008.10.1016/j.gmod.2012.03.008Search in Google Scholar

79. Wong WCK, So RWK, Chung ACS. Principal curves for lumen center extraction and flow channel width estimation in 3-D arterial networks: Theory, Algorithm, and Validation. IEEE Trans Image Proc. 2012;21:1847-1862. doi: 10.1109/ TIP.2011.2179054.Search in Google Scholar

80. Delibasis KK, Kechriniotis AI, Tsonos C, Assimakis N. Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput Meth Prog Biomed. 2010;100:108-122. doi: 10.1016/j.cmpb.2010.03.00.Search in Google Scholar

81. Wang Y, Liatsis P. Automatic segmentation of coronary arteries in CT imaging in the presence of kissing vessel artifacts. IEEE Trans Inform Technol Biomed. 2012;16:782-789. doi: 10.1109/TITB.2012.2192286.Search in Google Scholar

82. Bauer C, Pock T, Sorantin E, Bischof H, Beichel R. Segmentation of interwoven 3D tubular tree structures utilizing shape priors and graph cuts. Med Image Anal. 2010;14:172-184. doi: 10.1016/j.media.2009.11.003.Search in Google Scholar

83. Zhou C, Chan HP, Chughtai A, et al. Automated coronary artery tree extraction in coronary CT angiography using a multiscale enhancement and dynamic balloon tracking (MSCAR-DBT) method. Comput Med Imag Graph. 2012;36:1-10. doi: 10.1016/j.compmedimag.2011.04.001.Search in Google Scholar

84. Gülsün MA, Funka-Lea G, Zheng YF, Eckert M. CTA coronary labeling through efficient geodesics between trees using anatomy priors. Med Image Comput Comput Assist Interv. 2014;17:521-528.10.1007/978-3-319-10470-6_6525485419Search in Google Scholar

85. Fabijanska A. Segmentation of pulmonary vascular tree from 3D CT thorax scans. Biocybern Biomed Eng. 2015;35:106-119. http://dx.doi.org/10.1016/j.bbe.2014.07.001.10.1016/j.bbe.2014.07.001Search in Google Scholar

86. Orkisz M, Hernandez Hoyos M, Pérez Romanello V, et al. Segmentation of the pulmonary vascular trees in 3D CT images using variational region-growing. IRBM. 2014;35:11-19. http://dx.doi.org/10.1016/j.irbm.2013.12.001.10.1016/j.irbm.2013.12.001Search in Google Scholar

87. Rudyanto RD, Kerkstra S, van Rikxoort, et al. Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study. Med Image Anal. 2014;18:1217-1232. doi: 10.1016/j.media.2014.07.003.Search in Google Scholar

88. Xiao CY, Staring M, Shamonin D, Reiber JHC, Stolk J, Stoel BC. A strain energy filter for 3D vessel enhancement with application to pulmonary CT images. Med Image Anal. 2011;15:112-124. doi: 10.1016/j.media.2010.08.003.Search in Google Scholar

89. Forkert ND, Schmidt-Richberg A, Fiehler J, et al. 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights. Magn Reson Imaging. 2013;31:262-71. doi: 10.1016/j. mri.2012.07.008.Search in Google Scholar

90. Hassan M, Chaudhry A, Khan A, Kim JY. Carotid artery image segmentation using modified spatial fuzzy c-means and ensemble clustering. Comput Methods Programs Biomed. 2012;108:1261-1276. doi: 10.1016/j.cmpb.2012.08.011.Search in Google Scholar

91. Fathi A, Naghsh-Nilchi AR. Automatic wavelet-based retinal blood vessels segmentation and vessel diameter estimation. Biomed Sign Proc Contr. 2013;8:71-80. http://dx.doi.org/10.1016/j.bspc.2012.05.005.10.1016/j.bspc.2012.05.005Search in Google Scholar

92. Moghimirad E, Rezatofighi SH, Soltanian-Zadeh. Retinal vessel segmentation using a multi-scale medialness function. Comput Biol Med. 2012;42:50-60. http://dx.doi.org/10.1016/j.compbiomed.2011.10.008.10.1016/j.compbiomed.2011.10.00822099700Search in Google Scholar

93. Cimen S, Hoogendoorn C, Morris PD, Gunn J, Frangi AF. Reconstruction of coronary trees from 3DRA using a 3D+t statistical cardiac prior. Med Image Comput Comput Assist Interv. 2014;17:619-626.Search in Google Scholar

94. Cimen S, Gooya A, Ravikumar N, Taylor ZA, Frangi AF. Reconstruction of coronary artery centrelines from X-ray angiography using a mixture of student’s t-distributions. Lecture Notes in Computer Science (MICCAI). 2016;9902:291-299. doi: 10.1007/978-3-319-46726-9_34.Search in Google Scholar

95. Hu Y, Jung M, Oukili A, et al. Sparse reconstruction from a limited projection number of the coronary artery tree in X-ray rotational imaging. IEEE Int Symp Biomed Imag (ISBI). 2012; pp. 804-807. doi: 10.1109/ISBI.2012.6235670.Search in Google Scholar

96. Fallavollita P, Cheriet F. Optimal 3D reconstruction of coronary arteries for 3D clinical assessment. Comput Med Imaging Graph. 2008;32:476-487. doi: 10.1016/j. compmedimag.2008.05.001.Search in Google Scholar

97. Gülsün MA, Funka-Lea G, Sharma P, Rapaka S, Zheng YF. Coronary centerline extraction via optimal flow paths and CNN path pruning. Lecture Notes in Computer Science (MICCAI). 2016;9902:317-325. doi: 10.1007/978-3-319-46726-9_37.Search in Google Scholar

98. Kitamura Y, Li YZ, Ito W. Automatic coronary extraction by supervised detection and shape matching. IEEE Int Symp Biomed Imag (ISBI). 2012;234-237. doi: 10.1109/ ISBI.2012.6235527.Search in Google Scholar

99. Dufour A, Tankyevych O, Naegel B, et al. Filtering and segmentation of 3D angiographic data: Advances based on mathematical morphology. Med Image Anal. 2013;17:147-164. http://dx.doi.org/10.1016/j.media.2012.08.004.10.1016/j.media.2012.08.00423168165Search in Google Scholar

100. Krissian K, Carreira JM, Esclarin J, Maynar M. Semi-automatic segmentation and detection of aorta dissection wall in MDCT angiography. Med Image Anal. 2014;18:83-102. doi: 10.1016/j. media.2013.09.004.Search in Google Scholar

101. Shang YF, Deklerck R, Nyssen E, et al. Vascular active contour for vessel tree segmentation. IEEE Trans Biomed Eng. 2011;58:1023-1032. doi: 10.1109/TBME.2010.2097596.Search in Google Scholar

102. Shin SY, Lee S, Noh KJ, Yun ID, Lee KM. Extraction of coronary vessels in fluoroscopic X-ray sequences using vessel correspondence optimization. Lecture Notes in Computer Science (MICCAI). 2016;9902:308-316. doi: 10.1007/978-3-319-46726-9_36.Search in Google Scholar

103. Liu L, Shi WZ, Rueckert D, Hu MX, Ourselin S, Zhuang XH. Model-guided directional minimal path for fully automatic extraction of coronary centerlines from cardiac CTA. Med Image Comput Comput Assist Interv. 2013;16:542-549.10.1007/978-3-642-40811-3_6824505709Search in Google Scholar

104. Liu L, Shi WZ, Rueckert D, Hu MX, Ourselin S, Zhuang XH. Coronary centerline extraction based on ostium detection and model-guided directional minimal path. IEEE Int Symp Biomed Imag (ISBI). 2014;133-136. doi: 10.1109/ ISBI.2014.6867827.Search in Google Scholar

105. Sun SY, Wang P, Sun SH, Chen T. Model-guided extraction of coronary vessel structures in 2D X-ray angiograms. Med Image Comput Comput Assist Interv. 2014;17:594-602.10.1007/978-3-319-10470-6_7425485428Search in Google Scholar

106. Medrano-Garcia P, Ormiston J, Webster M, et al. Construction of a coronary artery atlas from CT angiography. Med Image Comput Comput Assist Interv. 2014;17:513-520.10.1007/978-3-319-10470-6_6425485418Search in Google Scholar

107. Zheng YF, Tek H, Funka-Lea G. Robust and accurate coronary artery centerline extraction in CTA by combining modeldriven and data-driven approaches. Med Image Comput Comput Assist Interv. 2013;16:74-81.Search in Google Scholar

108. Perona P, Malik J. Scale space and edge detection using anisotropic diffusion. IEEE Trans Patt Anal Mach Intell. 1990;12:629-639.10.1109/34.56205Search in Google Scholar

109. Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. Lecture Notes in Computer Science (MICCAI). 1998;1496:130-137.10.1007/BFb0056195Search in Google Scholar

110. Han DJ, Doan NT, Shim H, et al. A fast seed detection using local geometrical feature for automatic tracking of coronary arteries in CTA. Comput Methods Programs Biomed. 2014;117:179-188. doi: 10.1016/j.cmpb.2014.07.005.Search in Google Scholar

111. Benyó B. Identification of dental root canals and their medial line from micro-CT and cone-beam CT records. BioMed Eng Online 2012;11:81. doi: 10.1186/1475-925X-11-81.Search in Google Scholar

112. Au OKC, Tai CL, Chu HK, Cohen-Or D, Lee TY. Skeleton extraction by mesh contraction. ACM Trans Graph. 2008;27:1-10.Search in Google Scholar

113. Hoffmann U, Bamberg F, Chae CU, et al. Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol. 2009;53:1642-1650. doi: 10.1016/j. jacc.2009.01.052.Search in Google Scholar

114. Hoffman U, Truong Q, Schoenfield D, et al. Coronary CT angiography versus Standard Evaluation in Acute Chest Pain. N Engl J Med. 2012;367:299-308. doi: 10.1056/NEJMoa1201161.Search in Google Scholar

115. Kolansky DM. Acute coronary syndromes: morbidity, mortality, and pharmacoeconomic burden. Am J Manag Care. 2009;15:36-41.Search in Google Scholar

116. Hagan PG, Nienaber CA, Isselbacher EM, et al. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA. 2000;283:897-903.10.1001/jama.283.7.89710685714Search in Google Scholar

117. Eagle KA, Lim MJ, Dabbous OH, et al. A validated prediction model for all forms of acute coronary syndrome: estimating the risk of 6-month postdischarge death in an international registry. JAMA. 2004;9;291:2727-2733. doi:10.1001/ jama.291.22.2727.Search in Google Scholar

118. Kristensen TS, Kofoed KF, Kühl JT, Nielsen WB, Nielsen MB, Kelbæk HJ. Prognostic implications of non-obstructive coronary plaques in patients with non-ST-segment elevation myocardial infarction: a multidetector computed tomography study. J Am Coll Cardiol. 2011;58:502-509. doi: 10.1016/j. jacc.2011.01.058.Search in Google Scholar

eISSN:
2457-5518
Language:
English