[[1] Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, Kluwer Academic Publishers, 2001.]Search in Google Scholar
[[2] Timothy J. Blanche, Martin A. Spacek, Jamille F. Hetke, and Nicholas V. Swindale, Polytrodes: high density silicon electrode arrays for large scale multiunit recording, Journal of Neurophysiology, Vol.93, No.5, pp.2987-3000, 2005.]Search in Google Scholar
[[3] Tim Blanche, Multi-neuron recordings in primary visual cortex. CRCNS.org. 2009. http://dx.doi.org/10.6080/K0MW2F2J]Search in Google Scholar
[[4] Zhiyi Chi, Wei Wu, Zach Haga, Nicholas G. Hatsopoulos, and Daniel Margoliash, Template-based spike pattern identification with linear convolution and dynamic time warping, Journal of Neurophysiology, Vol.97, pp.1221-1235, 2007.]Search in Google Scholar
[[5] Justin Dauwels, Franc¸ois Vialatte, Theophane Weber, and Andrzej Cichocki, On similarity measures for spike trains, in Proceeding of the 15th International Conference on Advances in Neuro- Information Processing, pp.177-185, 2009.10.1007/978-3-642-02490-0_22]Search in Google Scholar
[[6] Peter Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT Press, 2001.]Search in Google Scholar
[[7] Alexander J. Dubbs, Brad A. Seiler, and Marcelo O. Magnasco, A fast Lp spike alignment metric, Neural Computation, Vol.22, pp.2785-2808, 2010.]Search in Google Scholar
[[8] Jan Eichhorn, Andreas Tolias, Alexander Zien, Malte Kuss, Carl Edward Rasmussen, JasonWeston, Nikos Logothetis, and Bernhard Sch¨olkopf, Prediction on spike data using kernel algorithms, Advances in Neural Information Processing Systems, Vol.16, pp.1367-1374, 2004.]Search in Google Scholar
[[9] Nicholas Fisher and Arunava Banerjee, A novel kernel for learning a neuron model from spike train data, Advances in Neural Information Processing Systems, Vol.23, pp.595-603, 2010.]Search in Google Scholar
[[10] K.J. Friston, L. Harrison, and W. Penny, Dynamic causal modeling, NeuroImage, Vol.19, no. 4, pg.1273-1302, 2003.]Search in Google Scholar
[[11] Matteo Garofalo, Thierry Nieus, Paolo Massobrio, and Sergio Martinoia, Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks, PLoS One, Vol.4, No.8, e6482, 2009.10.1371/journal.pone.0006482271586519652720]Search in Google Scholar
[[12] Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Paninski, Neuronal Dynamics, Cambridge University Press, 2014.10.1017/CBO9781107447615]Search in Google Scholar
[[13] C.W.J. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica, Vol.37, No.3, 424-438, 1969.10.2307/1912791]Search in Google Scholar
[[14] Conor Houghton and Thomas Kreuz, Measures of spike train synchrony: From single neurons to populations, in Misha Meyer Pesenson (Ed.), Multiscale Analysis and Nonlinear Dynamics: From Genes to the Brain, John Wiley & Sons, Inc., 2013.10.1002/9783527671632.ch13]Search in Google Scholar
[[15] Conor Houghton and Jonathan Victor, Measuring representational distances - the spike-train metrics approach, in Nikolaus Kriegeskorte and Gabriel Kreiman (Eds.), Understanding Visual Population Codes: Towards a Common Multivariate Framework for Cell Recording and Functional Imaging, MIT Press, 2011.]Search in Google Scholar
[[16] Don H. Johnson, Charlotte M. Gruner, Keith Baggerly, and Chandran Seshagiri, Informationtheoretic analysis of neural coding, Journal of Computational Neuroscience, Vol.10, pp.47-69, 2001.10.1023/A:1008968010214]Search in Google Scholar
[[17] Maciej Kaminski and Katarzyna J. Blinowska, A new method of the description of the information flow in the brain structures, Biological Cybernetics, Vol. 65, No.3, pp.203-210, 1991.10.1007/BF001980911912013]Search in Google Scholar
[[18] Maciej Kaminski, Mingzhou Ding, Wilson A. Truccolo, and Steven L. Bressler, Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance, Biological Cybernetics, Vol. 85, No.2, pp.145-157, 2001.10.1007/s00422000023511508777]Search in Google Scholar
[[19] Ryota Kobayashi and Katsunori Kitano, Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network model, Journal of Computational Neuroscience, Vol.35, pp.109-124, 2013.10.1007/s10827-013-0443-y23388860]Search in Google Scholar
[[20] Thomas Kreuz, Daniel Chicharro, Conor Houghton, Ralph G. Andrzejak, and Florian Mormann, Monitoring spike train synchrony, Journal of Neurophysiology, Vol.109, pp.1457-1472, 2012.]Search in Google Scholar
[[21] Lin Li, Austin J. Brockmeier, John S. Choi, Joseph T. Francis, Justin C. Sanchez, and Jose C. Principe, A tensor-product-kernel framework for multiscale neural activity decoding and control, Computational Intelligence and Neuroscience, 2014.10.1155/2014/870160400915524829569]Search in Google Scholar
[[22] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, Foundations of Machine Learning, MIT Press, 2012.]Search in Google Scholar
[[23] Richard Naud, Felipe Gerhard, Skander Mensi, and Wulfram Gerstner, Improved similarity measures for small sets of spike trains, Neural Computation, Vol.23, pp.3016-3069, 2011.]Search in Google Scholar
[[24] Murat Okatan, Mathew A. Wilson, and Emery N. Brown, Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity, Neural Computation, Vol.17, pp.1927-1961, 2005.]Search in Google Scholar
[[25] Antonio R.C. Paiva, Il Park, and Jose C. Principe, A reproducing kernel Hilbert space framework for spike train signal processing, Neural Computation, Vol.21, No.2, pp.424-449, 2009.10.1162/neco.2008.09-07-61419431265]Search in Google Scholar
[[26] Antonio R.C. Paiva, Il Park, and Jose C. Principe, Inner products for representation and learning in the spike train domain, in Karim G. Oweiss (Ed.), Statistical Signal Processing for Neuroscience and Neurotechnology, Academic Press, 2010.]Search in Google Scholar
[[27] Stefano Panzeri and Alessandro Treves, Analytical estimates of limited sampling in different information measures, Network: Computation in Neural Systems, 7, pp.87-107, 1996.10.1080/0954898X.1996.1197865629480146]Search in Google Scholar
[[28] Il Memming Park, Sohan Seth, Murali Rao, and Jose C. Principe, Strictly positive definite spike train kernels for point process divergences, Neural Computation, Vol.24, pp.2223-2250, 2012.]Search in Google Scholar
[[29] Il Memming Park, Sohan Seth, Antonio R.C. Paiva, Lin Li, and Jose C. Principe, Kernel methods on spike train space for neuroscience: a tutorial, Signal Processing Magazine, Vol.30, No.4, pp.149-160, 2013.10.1109/MSP.2013.2251072]Search in Google Scholar
[[30] Christopher J. Quinn, Todd P. Coleman, Negar Kiyavash, and Nicholas G. Hatsopoulos, Estimating the directed information to infer causal relationships in ensemble neural spike train recordings, Journal of Computational Neuroscience, 2010.]Search in Google Scholar
[[31] Carl Edward Rasmussen and Christopher K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006.10.7551/mitpress/3206.001.0001]Search in Google Scholar
[[32] Fred Rieke, David Warland, Rob de Ruyter van Steveninck, and William Bialek, Spikes: Exploring the Neural Code, MIT Press, 1997.]Search in Google Scholar
[[33] Catalin V. Rusu and Razvan V. Florian, A new class of metrics for spike trains, Neural Computation, Vol.26, No.2, pp.306-348, 2014.10.1162/NECO_a_0054524206385]Search in Google Scholar
[[34] Gerard M. Salton, Andrew Wong, and Chungshu Yang, A vector space model for automatic indexing, Communications of the ACM, Vol.18, No.11, pp.613-620, 1975.10.1145/361219.361220]Search in Google Scholar
[[35] Thomas Schreiber, Measuring information transfer, Physical Review Letters, Vol.85, No.2, 2000.10.1103/PhysRevLett.85.46110991308]Search in Google Scholar
[[36] John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004.10.1017/CBO9780511809682]Search in Google Scholar
[[37] Lavi Shpigelman, Yoram Singer, Rony Paz, and Eilon Vaadia, Spikernels: embedding spiking neurons in inner product spaces, Advances in Neural Information Processing Systems, Vol.15, pp.125-132, 2003.]Search in Google Scholar
[[38] Lavi Shpigelman, Yoram Singer, Rony Paz, and Eilon Vaadia, Spikernels: predicting arm movements by embedding population spike rate patterns in inner-product spaces, Neural Computation, Vol.17, pp.671-690, 2005.10.1162/089976605301994415802010]Search in Google Scholar
[[39] Lavi Shpigelman, Hagai Lalazar, and Eilon Vaadia, Kernel-ARMA for hand tracking and brainmachine interfacing during 3D motor control, Advances in neural information processing systems, Vol.21, 1489-1496, 2008.]Search in Google Scholar
[[40] Taro Tezuka, Spike train kernels for multiple neuron recordings, Proceedings of the 39th International Conference on Acoustics, Speech and Signal Processing, pp.6035-6039, 2014.]Search in Google Scholar
[[41] Taro Tezuka and Christophe Claramunt, Connectivity estimation of neural networks using a spike train kernel, Proceedings of the 2015 International Joint Conference on Neural Networks, pp.1-7, Killarney, Ireland, July 12-17, 2015.10.1109/IJCNN.2015.7280439]Search in Google Scholar
[[42] M.C.W. van Rossum, A novel spike distance, Neural Computation, Vol.13, pp.751-763, 2001. 10.1162/08997660130001432111255567]Search in Google Scholar
[[43] Raul Vicente, Michael Wibral, Michael Lindner, and Gordon Pipa, Transfer entropy - a model-free measure of effective connectivity for the neurosciences. Journal of Computational Neuroscience, Vol.30, No.1, pp.45-67, 2011.10.1007/s10827-010-0262-3304035420706781]Search in Google Scholar
[[44] Jonathan D. Victor, Spike train metrics, Current Opinion in Neurobiology, Vol.15, pp.585-592, 2005.10.1016/j.conb.2005.08.002271319116140522]Search in Google Scholar
[[45] Jonathan D. Victor and Keith P. Purpura, Nature and precision of temporal coding in visual cortex: a metric-space analysis, Journal of Neurophysiology, Vol.76, pp.1310-1326, 1996.]Search in Google Scholar
[[46] Jonathan D. Victor and Keith P. Purpura, Spike metrics, in Nikolaus Kriegeskorte and Gabriel Kreiman (Eds.), Understanding Visual Population Codes: Towards a Common Multivariate Framework for Cell Recording and Functional Imaging, MIT Press, 2011.]Search in Google Scholar
[[47] Wei Wu and Anuj Srivastava, An informationgeometric framework for statistical inferences in the neural spike train space, Journal of Computational Neuroscience, Vol.31, No.3, pp.725-48, 2011.10.1007/s10827-011-0336-x21584775]Search in Google Scholar