1. bookVolume 16 (2017): Issue 1 (July 2017)
Journal Details
License
Format
Journal
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
Copyright
© 2020 Sciendo

Computational Estimation of Football Player Wages

Published Online: 22 Jul 2017
Page range: 18 - 38
Journal Details
License
Format
Journal
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
Copyright
© 2020 Sciendo

The wage of a football player is a function of numerous aspects such as the player’s skills, performance in the previous seasons, age, trajectory of improvement, personality, and more. Based on these aspects, salaries of football players are determined through negotiation between the team management and the agents. In this study we propose an objective quantitative method to determine football players’ wages based on their skills. The method is based on the application of pattern recognition algorithms to performance (e.g., scoring), behavior (e.g., aggression), and abilities (e.g., acceleration) data of football players. Experimental results using data from 6,082 players show that the Pearson correlation between the predicted and actual salary of the players is ~0.77 (p < .001). The proposed method can be used as an assistive technology when negotiating players salaries, as well as for performing quantitative analysis of links between the salary and the performance of football players. The method is based on the performance and skills of the players, but does not take into account aspects that are not related directly to the game such as the popularity of the player among fans, predicted merchandise sales, etc, which are also factors of high impact on the salary, especially in the case of the team lead players and superstars. Analysis of player salaries in eight European football leagues show that the skills that mostly affect the salary are largely consistent across leagues, but some differences exist. Analysis of underpaid and overpaid players shows that overpaid players tend to be stronger, but are inferior in their reactions, vision, acceleration, agility, and balance compared to underpaid football players.

Keywords

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1):37–66.Search in Google Scholar

Aldous, D. (1993). The continuum random tree III. The Annals of Probability, 248–289.Search in Google Scholar

Arnedt, R. B. (1998). European union law and football nationality restrictions: the economics and politics of the bosman decision. Emory International Law Review, 12, 1091.Search in Google Scholar

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally weighted learning for control. In Lazy learning (pp. 75-113). Springer Netherlands.Search in Google Scholar

Bishop, C. M. (2006). Pattern recognition and machine learning. Machine Learning, 128, 1–58.Search in Google Scholar

Bryson, A., Rossi, G., & Simmons, R. (2014). The migrant wage premium in professional football: a superstar effect? Kyklos, 67(1), 12–28.Search in Google Scholar

Castellano, J., Alvarez-Pastor, D., & Bradley, P. S. (2014). Evaluation of research using computerised tracking systems (amisco r and prozone r) to analyse physical performance in elite soccer: A systematic review. Sports Medicine, 44(5), 701–712.Search in Google Scholar

Cleary, J. G., Trigg, L. E., et al. (1995). K*: An instance-based learner using an entropic distance measure. In Proceedings of the 12th International Conference on Machine learning, 5, 108–114.Search in Google Scholar

Dasarathy, B. V. (1994). Minimal consistent set (mcs) identification for optimal nearest neighbor decision systems design. IEEE Transactions on Systems, Man, and Cybernetics, 24(3), 511–517.Search in Google Scholar

Dejonghe, T. & Van Opstal, W. (2010). Competitive balance between national leagues in european football after the bosman case. Rivista di Diritto ed Economia dello Sport, 6(2), 41–61.Search in Google Scholar

Feess, E., Gerfin, M., & Muehlheusser, G. (2010). The incentive effects of long-term contracts on performance-evidence from a natural experiment in european soccer. Technical Report, Mimeo: Berlin.Search in Google Scholar

Frank, E., Hall, M., & Pfahringer, B. (2002). Locally weighted naive bayes. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, 249–256.Search in Google Scholar

Frick, B. (2006). Salary determination and the pay-performance relationship in professional soccer: Evidence from germany. Sports Economics After Fifty Years: Essays in Honour of Simon Rottenberg. Oviedo: Ediciones de la Universidad de Oviedo, 125–146.Search in Google Scholar

Frick, B. (2007). The football player’s labor market: Empirical evidence from the major european leagues. Scottish Journal of Political Economy, 54(3), 422–446.Search in Google Scholar

Frick, B. (2011). Performance, salaries, and contract length: empirical evidence from german soccer. International Journal of Sport Finance, 6(2), 87.Search in Google Scholar

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378.Search in Google Scholar

Garcia-del Barrio, P., & Pujol, F. (2007). Pay and performance in the spanish soccer league: who gets the expected monopsony rents. Technical report, University of Navarra, SpainSearch in Google Scholar

Garcia-del Barrio, P., & Pujol, F. (2009). The rationality of under-employing the bestperforming soccer players. Labour, 23(3), 397–419.Search in Google Scholar

Giulianotti, R. (2012). Football. Wiley Online Library.Search in Google Scholar

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844.Search in Google Scholar

Jensen, M. M., Grønbæk, K., Thomassen, N., Andersen, J., and Nielsen, J. (2014). Interactive football-training based on rebounders with hit position sensing and audio-visual feedback. Intentional Journal of Computer Science in Sport, 13(1), 57–68.Search in Google Scholar

Kase, K., De Hoyos, I. U., Sanchis, C. M., & Breton, M. O. (2007). The proto-image of real madrid: implications for marketing and management. International Journal of Sports Marketing and Sponsorship, 8(3), 7–28.Search in Google Scholar

Kohavi, R. (1995). The power of decision tables. In European Conference on Machine Learning, 174–189.Search in Google Scholar

Lames, M., McGarry, T., Nebel, B., & Roemer, K. (2011). Computer science in sportspecial emphasis: Football (dagstuhl seminar 11271). Dagstuhl Reports, 1(7).Search in Google Scholar

Markovits, A. S., & Green, A. I. (2017). FIFA, the video game: a major vehicle for soccer’s popularization in the United States. Sport in Society, 20(5-6), 716-734.Search in Google Scholar

Muller, J. C., Lammert, J., & Hovemann, G. (2012). The financial fair play regulations of uefa: An adequate concept to ensure the long-term viability and sustainability of european club football? International Journal of Sport Finance, 7(2), 117.Search in Google Scholar

O’Donoghue, P. & Robinson, G. (2009). Validity of the prozone3 r player tracking system: A preliminary report. International Journal of Computer Science in Sport, 8(1), 37–53.Search in Google Scholar

Orejan, J. (2011). Football/Soccer: History and tactics. McFarland. Jefferson, NC, USA.Search in Google Scholar

Prasetio, D. (2016). Predicting football match results with logistic regression. In International Conference on Advanced Informatics: Concepts, Theory And Application, 1–5.Search in Google Scholar

Robnik-Sikonja, M. & Kononenko, I. (1997). An adaptation of relief for attribute estimation in regression. In Machine Learning: Proceedings of the Fourteenth International Conference, 296–304.Search in Google Scholar

Rohde, M. & Breuer, C. (2016). Europes elite football: Financial growth, sporting success, transfer investment, and private majority investors. International Journal of Financial Studies, 4(2), 12.Search in Google Scholar

Seung, H. S., Opper, M., & Sompolinsky, H. (1992). Query by committee. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 287–294.Search in Google Scholar

Shin, J. & Gasparyan, R. (2014). A novel way to soccer match prediction. Technical Report, Stanford U., CA. USA.Search in Google Scholar

Siegle, M., Stevens, T., & Lames, M. (2013). Design of an accuracy study for position detection in football. Journal of Sports Sciences, 31(2), 166–172.Search in Google Scholar

Torgler, B. & Schmidt, S. L. (2007). What shapes player performance in soccer? empirical findings from a panel analysis. Applied Economics, 39(18), 2355–2369.Search in Google Scholar

Torgler, B., Schmidt, S. L., & Frey, B. S. (2006). Relative income position and performance: an empirical panel analysis.Search in Google Scholar

Wicker, P., Prinz, J., Weimar, D., Deutscher, C., & Upmann, T. (2013). No pain, no gain? effort and productivity in professional soccer. International Journal of Sport Finance, 8(2), 124.Search in Google Scholar

Plan your remote conference with Sciendo