Open Access

Incompressible SPH Model for Simulating Violent Free-Surface Fluid Flows


Cite

Antoci C., Gallati M. and Sibilla S. (2007) Numerical simulation of fluid-structure interaction by SPH, Comput. Struct., 85 (11-14), 879-890, DOI: 10.1016/j.compstruc.2007.01.002.10.1016/j.compstruc.2007.01.002Search in Google Scholar

Belytschko T., Krongauz Y., Dolbow J. and Gerlach C. (1998) On the completeness of meshfree particle methods, Inter. J. Numer. Meth. Eng., 43 (5), 785-819, DOI: 10.1002/(SICI)1097-0207(19981115) 43:5.Search in Google Scholar

Belytschko T., Krongauz Y., Organ D., Fleming M. and Krysl P. (1996) Meshless methods: An overview and recent developments, Comput. Meth. Appl. Mech. Eng., 139 (1-4), 3-47.10.1016/S0045-7825(96)01078-XSearch in Google Scholar

Braess H. andWriggers P. (2000), Arbitrary Lagrangian Eulerian finite element analysis of free surface flows, Comput. Meth. Appl. Mech. Eng., 190 (1-2), 95-109.10.1016/S0045-7825(99)00416-8Search in Google Scholar

Chang T. J., Kao H. M., Chang K. H. and Hsu M. H. (2011) Numerical simulation of shallow-water dam break in open channels using smoothed particle hydrodynamics, J. Hydrol., 408 (1-2), 78-90, DOI: 10.1016/j.hydrol.2011.07.023.Search in Google Scholar

Chorin A. j. (1968) Numerical solution of the Navier-Stokes equations, Math. Comput., 22 (104), 745-762.Search in Google Scholar

Colagrossi A. and Landrini M. (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., 191 (2), 448-475, DOI: 10.1016/S0021-9991(03)00324-3.10.1016/S0021-9991(03)00324-3Search in Google Scholar

Cummins S. J. and Rudman M. (1999) An SPH projection method, J. Comput. Phys., 152 (2), 584-607, DOI: 10.1016/jcph1999.6246.Search in Google Scholar

Cummins S. J., Silvester T. B. and Cleary P. W. (2012) Three-dimensional wave impact on a rigid structure using smoothed particle hydrodynamics, Int. J. Numer. Meth. Fluids, 68 (12), 1471-1496, DOI: 10.1016/fld.2539.Search in Google Scholar

Dalrymple R. A. and Rogers B. D. (2006) Numerical modeling of water waves with the SPH method, Coastal Eng., 53 (2-3), 141-147, DOI: 10.1016/j.coastaleng.2005.10.004.10.1016/j.coastaleng.2005.10.004Search in Google Scholar

Gingold R. A. and Monaghan J. J. (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389.Search in Google Scholar

Gómez-Gesteira M., Cerqueiro D., Crespo C. and Dalrymple R. A. (2005) Green water overtopping analyzed with a SPH method, Ocean Eng., 32 (2), 223-238, DOI: 10.1016/j.oceaneng.2004.08.003.10.1016/j.oceaneng.2004.08.003Search in Google Scholar

Harlow F. H. (2004) Fluid dynamics in Group T-3 Los Alamos National Laboratory (LA-UR-03-3852), J. Comput. Phys., 195 (2), 414-433, DOI: 10.1016/jcph2003.09.030.Search in Google Scholar

Harlow F. H. and Welch J. E. (1965) Numericl calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8 (12), 2182-2189.Search in Google Scholar

Hu X. Y. and Adams N. A. (2007) An incompressible multi-phase SPH method, J. Comput. Phys., 227 (1), 264-278, DOI: 10.1016/j.jcp2007.07.013.Search in Google Scholar

Johnson G. R., Stryk R. A. and Beissel S. R. (1996) SPH for high velocity impact computations, Comput.10.1016/S0045-7825(96)01089-4Search in Google Scholar

Appl. Mech. Eng., 139 (1-4), 347-373.Search in Google Scholar

Li S. and Liu W. K. (2004) Meshfree Particle Methods, Springer, Berlin.Search in Google Scholar

Lo E. Y. M. and Shao S. (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method, Appl. Ocean Res., 24 (5), 275-286, DOI: 10.1016/S0141-1187(03)00002-6.10.1016/S0141-1187(03)00002-6Search in Google Scholar

Lucy L. B. (1977) A numerical approach to the testing of the fission hypothesis, Astron. J., 82 (12), 1013-1024.Search in Google Scholar

Martin J. C. and MoyceW. J. (1952) An experimental study of the collapse of liquid columns on a rigid horizontal plane, Phil. Trans. R. Soc. Lond. A 244 (882), 312-324.Search in Google Scholar

Monaghan J. J. (1992) Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543-574, DOI: 10.1146/annurev.aa.30.090192.002551.10.1146/annurev.aa.30.090192.002551Search in Google Scholar

Monaghan J. J. (1996) Gravity currents and solitary waves, Physica D, 98 (2-4), 523-533.10.1016/0167-2789(96)00110-8Search in Google Scholar

Morris J. P. (1996) Analysis of Smoothed Particle Hydrodynamics with Applications, Ph. D. thesis, Monash University, Melbourne, Australia.Search in Google Scholar

Quecedo M., Pastor M., Herreros M. I., Fernandez Merodo J. A. and Zhang Q. (2005) Comparison of two mathematical models for solving the dam break problem using the FEM method, Comput.10.1016/j.cma.2004.09.011Search in Google Scholar

Meth. Appl. Mech. Eng., 194 (36-38), 3984-4005, DOI: 10.1146/j.cma.2004.08.011.Search in Google Scholar

Rabier S. and Medale M. (2003) Computation of free surface flows with a projection FEM in a moving mesh framework, Comput. Meth. Appl. Mech. Eng., 192 (41-42), 4703-4721.10.1016/S0045-7825(03)00456-0Search in Google Scholar

Radovitzky R. and Ortiz M. (1998) Lagrangian finite element analysis of Newtonian viscous flow, Int.10.1002/(SICI)1097-0207(19981030)43:4<607::AID-NME399>3.0.CO;2-NSearch in Google Scholar

J. Numer. Meth. Eng., 43 (4), 608-619.Search in Google Scholar

Rafiee A., Cummins S., Rudman M. and Thiagarajan K. (2012) Comparative study on the accuracy and stability of SPH schemes in simulating energetic free-surface flows, Eur. J. Mech. B/Fluids, 36 (1-16), DOI: 10.1146/j.euromechflu.2012.05.001.Search in Google Scholar

Ramaswamy B. and Kawahara M. (1987) Lagrangian finite element analysis applied to viscous free surface flow, Int. J. Numer. Meth. Fluids, 7 (9), 953-984.10.1002/fld.1650070906Search in Google Scholar

Randles P.W. and Libersky L. D. (1996) Smoothed Particle Hydrodynamics. Some recent improvements and applications, Comput. Meth. Appl. Mech. Eng., 139 (1-4), 375-408.10.1016/S0045-7825(96)01090-0Search in Google Scholar

Shao S. (2006) Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling, Int. J. Numer. Meth. Fluids, 50 (5), 597-621, DOI: 10.1002/fld.1068.10.1002/fld.1068Search in Google Scholar

Shao S. (2010) Incompressible SPH flow model for wave interactions with porous media, Coastal Eng., 57 (3), 304-316, DOI: 10.1016/j.coastaleng.2009.10.012. Shao S. and Lo E.Y. M. (2003) Incompressible SPH for simulating Newtonian and non-Newtonian flows with a free surface, Adv. Water Resour., 26 (7), 787-800, DOI: 10.1016/S0309-1708(03)0030-7.Search in Google Scholar

Souli M. and Zolesio J. P. (2001) Arbitrary Lagrangian-Eulerian and free surface methods in fluid mechanics, Comput. Meth. Appl. Mech. Eng., 191 (3-5), 451-466.10.1016/S0045-7825(01)00313-9Search in Google Scholar

Staroszczyk R. (2007) A Lagrangian finite element treatment of transient gravitational waves in compressible viscous fluids, Arch. Hydro-Eng. Environ. Mech., 54 (4), 261-284.Search in Google Scholar

Staroszczyk R. (2009) A Lagrangian finite element analysis of gravity waves in water of variable depth, Arch. Hydro-Eng. Environ. Mech., 56 (1-2), 43-61.Search in Google Scholar

Staroszczyk R. (2010) Simulation of dam-break flow by a corrected smoothed particle hydrodynamics method, Arch. Hydro-Eng. Environ. Mech., 57 (1), 61-79.Search in Google Scholar

Staroszczyk R. (2011) Simulation of solitary waves mechanics by a corrected smoothed particle hydrodynamics method, Arch. Hydro-Eng. Environ. Mech., 58 (1-4), 23-45, DOI: 10.2478/ v10203-011-0002-9.Search in Google Scholar

Szydłowski M. and Zima P. (2006) Two-dimensional vertical Reynolds-averaged Navier-Stokes equations versus one-dimensional Saint-Venant model for rapidly varied open channel water flow modelling, Arch. Hydro-Eng. Environ. Mech., 53 (4), 295-309. Search in Google Scholar

eISSN:
2300-8687
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other