1. bookVolume 42 (2015): Issue 1 (January 2015)
Journal Details
First Published
04 Jul 2007
Publication timeframe
1 time per year
access type Open Access

Debris-flow activity in five adjacent gullies in a limestone mountain range

Published Online: 27 Mar 2015
Volume & Issue: Volume 42 (2015) - Issue 1 (January 2015)
Page range: -
Received: 27 May 2014
Accepted: 06 Feb 2015
Journal Details
First Published
04 Jul 2007
Publication timeframe
1 time per year

Debris-flows are infrequent geomorphic phenomena that shape steep valleys and can repre-sent a severe hazard for human settlements and infrastructure. In this study, a debris-flow event chro-nology has been derived at the regional scale within the Gesäuse National Park (Styria, Austria) using dendrogeomorphic techniques. Sediment sources and deposition areas were mapped by combined field investigation and aerial photography using an Unmanned Aerial Vehicle (UAV). Through the analysis of 384 trees, a total of 47 debris-flows occurring in 19 years between AD 1903 and 2008 were identified in five adjacent gullies. Our results highlight the local variability of debris-flow activi-ty as a result of local thunderstorms and the variable availability of sediment sources.


Alestalo J, 1971. Dendrochronological interpretation of geomorphic processes. Fennia 105: 1-140.Search in Google Scholar

Ballesteros JA, Eguibar M, Bodoque JM, Díez A, Stoffel M and Gutiérrez I, 2011. Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeo-morphic paleostage indicators. Hydrological Processes 25: 970-979, DOI 10.1002/hyp.7888.10.1002/hyp.7888Search in Google Scholar

Baumann F and Kaiser KF, 1999. The Multetta debris fan, eastern Swiss Alps: a 500-year debris flow chronology. Arctic, Antarctic, and Alpine Research 31: 128-134, DOI 10.2307/1552601.10.1080/15230430.1999.12003290Search in Google Scholar

Bollschweiler M and Stoffel M, 2010. Changes and trends in debris-flow frequency since AD 1850: Results from the Swiss Alps. The Holocene 20(6): 907-916, DOI 10.1177/0959683610365942.10.1177/0959683610365942Search in Google Scholar

Bollschweiler M, Stoffel M, Schneuwly DM and Bourqui K, 2008. Traumatic resin ducts in Larix decidua stems impacted by debris flows. Tree Physiology 28: 255-263, DOI 10.1093/treephys/ in Google Scholar

Bollschweiler M and Stoffel M, 2007. Debris flows on forested cones-reconstruction and comparison of frequencies in two catchments in Val Ferret, Switzerland. Natural Hazards and Earth System Sci-ences 7: 207-218, DOI 10.5194/nhess-7-207-2007.10.5194/nhess-7-207-2007Search in Google Scholar

Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D and Guzzetti F, 2010. Rainfall thresholds for the possible occurrence of land-slides in Italy. Natural Hazards and Earth System Sciences 10: 447-458, DOI 10.5194/nhess-10-447-2010.10.5194/nhess-10-447-2010Search in Google Scholar

GIS-Steiermark, 2013. http://www.gis.steiermark.at. Last access: 25.11.2013.Search in Google Scholar

Gottesfeld AS and Gottesfeld LMJ, 1990. Floodplain dynamics of a wandering river, dendrochronology of the Morice River, British Columbia, Canada. Geomorphology 3: 159-179, DOI 10.1016/0169-555X(90)90043-P.10.1016/0169-555X(90)90043-PSearch in Google Scholar

Guzzetti F, Peruccacci S, Rossi M and Stark CP, 2008. The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5(1): 3-17, DOI 10.1007/s10346-007-0112-1.10.1007/s10346-007-0112-1Search in Google Scholar

Hugenholtz CH, Whitehead K, Brown OW, Barchyn TE, Moorman BJ, LeClair A, Riddell K and Hamilton T, 2013. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model. Geomorphology 194: 16-24, DOI 10.1016/j.geomorph.2013. in Google Scholar

Hungr O, Morgan GC and Kellerhals R, 1984. Quantitative analysis of debris torrent hazards for design of remedial measures. Canadian Geotechnical Journal 21: 663-667, DOI 10.1139/t84-073.10.1139/t84-073Search in Google Scholar

Hupp CR, 1984. Dendrogeomorphic evidence of debris flow frequency and magnitude at Mount Shasta, California. Environmental Geolo-gy and Water Sciences 6(2): 121-128, DOI 10.1007/BF02509918.10.1007/BF02509918Search in Google Scholar

Hydrographic service Austria, 2013. http://ehyd.gv.at/ Last access: 25.11.2013.Search in Google Scholar

Jakob M, 2010. State of the Art in Debris-Flow Research: The Role of Dendrochronology. In: Stoffel, M., Bollschweiler, M., Butler, D.R., Luckman, B.H., (EDS). Tree rings and natural hazards: A state-of-the-art. Springer, Heidelberg, Berlin, New York, 183-192.10.1007/978-90-481-8736-2_17Search in Google Scholar

Jakob M and Bovis MJ, 1996. Morphometrical and geotechnical con-trols of debris flow activity, southern Coast Mountains, British Co-lumbia, Canada. Zeitschrift für Geomorphologie Supplementband 104: 13-26.Search in Google Scholar

Kogelnig-Mayer B, Stoffel M and Schneuwly-Bollschweiler M, 2013. Four-dimensional growth response of mature Larix decidua to stem burial under natural conditions. Trees - Structure and Func-tion 27(5): 1217-1223, DOI 10.1007/s00468-013-0870-4.10.1007/s00468-013-0870-4Search in Google Scholar

Kogelnig-Mayer B, Stoffel M, Bollschweiler M, Hübl J and Rudolf-Miklau F, 2011. Possibilities and limitations of dendrogeomorphic time-series reconstructions on sites influenced by debris flows and frequent snow avalanche activity. Arctic, Antarctic, and Alpine Re-search 43: 649-658.10.1657/1938-4246-43.4.649Search in Google Scholar

Lopez Saez J, Corona C, Stoffel M, Astrade L, Berger F and Malet JP, 2012. Dendrogeomorphic reconstruction of past landslide reactiva-tion with seasonal precision: the Bois Noir landslide, southeast French Alps. Landslides 9: 189-203, DOI 10.1007/s10346-011-0284-6.10.1007/s10346-011-0284-6Search in Google Scholar

Mayer B, Stoffel M, Bollschweiler M, Hübl J and Rudolf-Miklau F, 2010. Frequency and spread of debris floods on fans: a dendroge-omorphic case study from a dolomite catchment in the Austrian Alps. Geomorphology 118: 199-206, DOI 10.1016/j.geomorph.2009. in Google Scholar

Melton MA, 1965. The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. Journal of Geology 73: 1-38.10.1086/627044Search in Google Scholar

Pelfini M and Santilli M, 2008. Frequency of debris flows and their relation with precipitation: A case study in the Central Alps, Italy. Geomorphology 101: 721-730, DOI 10.1016/j.geomorph.2008. in Google Scholar

Procter E, Stoffel M, Schneuwly-Bollschweiler M and Neumann M, 2012. Exploring debris-flow history and process dynamics using an integrative approach on a dolomitic cone in western Austria. Earth Surface Processes and Landforms 37: 913-922, DOI 10.1002/esp.3207.10.1002/esp.3207Search in Google Scholar

Schneuwly-Bollschweiler M, Corona C and Stoffel M, 2013. How to improve dating quality and reduce noise in tree-ring based debris-flow reconstructions. Quaternary Geochronology 18: 110-118, DOI 10.1016/j.quageo.2013. in Google Scholar

Schneuwly-Bollschweiler M and Stoffel M, 2012. Hydrometeorological triggers of periglacial debris flows - a reconstruction dating back to 1864. Journal of Geophysical Research - Earth Surface 117: F02033, DOI 10.1029/2011JF002262.10.1029/2011JF002262Search in Google Scholar

Schneuwly DM, Stoffel M, Dorren LKA and Berger F, 2009a. Three-dimensional analysis of the anatomical growth response of Euro-pean conifers to mechanical disturbance. Tree Physiology 29: 1247-1257, DOI 10.1093/treephys/tpp056.10.1093/treephys/tpp056Search in Google Scholar

Schneuwly DM, Stoffel M and Bollschweiler M, 2009b. Formation and spread of callus tissue and tangential rows of resin ducts in Larix decidua and Picea abies following rockfall impacts. Tree Physiol-ogy 29: 281-289, DOI 10.1093/treephys/tpn026.10.1093/treephys/tpn026Search in Google Scholar

Schweingruber FH, 1996. Tree Rings and Environment - Dendroecolo-gy. Paul Huapt, Bern, Stuttgard, Wien.Search in Google Scholar

Shroder JF, 1978. Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quaternary Research 9: 168-185, DOI 10.1016/0033-5894(78)90065-0.10.1016/0033-5894(78)90065-0Search in Google Scholar

Šilhán K, 2012. Frequency of fast geomorphological processes in high-gradient streams: case study from the Moravskoslezské Beskydy Mts (Czech Republic) using dendrogeomorphic methods. Geo-chronometria 39: 122-132, DOI 10.2478/s13386-012-0002-8.10.2478/s13386-012-0002-8Search in Google Scholar

Stoffel M and Corona C, 2014. Dendroecological dating of geomorphic disturbance in trees. Tree-Ring Research 70: 3-20, DOI 10.3959/1536-1098- in Google Scholar

Stoffel M, Butler DR and Corona C, 2013. Mass movements and tree rings: A guide to dendrogeomorphic field sampling and dating. Geomorphology 200: 106-120, DOI 10.1016/j.geomorph.2012. in Google Scholar

Stoffel M and Wilford DJ, 2012. Hydrogeomorphic processes and vegetation: disturbance, process histories, dependencies and inter-actions. Earth Surface Processes and Landforms 37: 9-22, DOI 10.1002/esp.2163.10.1002/esp.2163Search in Google Scholar

Stoffel M, Casteller A, Luckman BH and Villalba R, 2012. Spatiotem-poral analysis of channel wall erosion in ephemeral torrents using tree roots - An example from the Patagonian Andes. Geology 40(3): 247-250, DOI 10.1130/G32751.1.10.1130/G32751.1Search in Google Scholar

Stoffel M, 2010. Magnitude-frequency relationships of debris flows - A case study based on field surveys and tree ring records. Geo-morphology 116: 67-76, DOI 10.1016/j.geomorph.2009. in Google Scholar

Stoffel M, Bollschweiler M, Butler DR and Luckman BH, 2010. Tree rings and natural hazards: A state-of-the-art. Springer, Heidel-berg, Berlin, New York, 505 pp.10.1007/978-90-481-8736-2Search in Google Scholar

Stoffel M and Bollschweiler M, 2009. What tree rings can tell about earth-surface processes: teaching the principle of dendrogeomor-phology. Geography Compass 3: 1013-1037, DOI 10.1111/j.1749-8198.2009.00223.x.10.1111/j.1749-8198.2009.00223.xSearch in Google Scholar

Stoffel M, 2008. Dating past geomorphic processes with tangential rows of traumatic resin ducts. Dendrochronologia 26(1): 53-60, DOI 10.1016/j.dendro.2007. in Google Scholar

Stoffel M, Conus D, Grichting MA, Lièvre I and Maître G, 2008. Un-raveling the patterns of late Holocene debris-flow activity on a cone in the Swiss Alps: chronology, environment and implications for the future. Global and Planetary Change 60: 222-234, DOI 10.1016/j.gloplacha.2007. in Google Scholar

Stoffel M and Bollschweiler M, 2008. Tree-ring analysis in natural hazards research - an overview. Natural Hazards and Earth Sys-tem Sciences 8: 187-202, DOI 10.5194/nhess-8-187-2008.10.5194/nhess-8-187-2008Search in Google Scholar

Stoffel M, Bollschweiler M and Hassler GR, 2006. Differentiating past events on a cone influenced by debris-flow and snow avalanche activity - a dendrogeomorphological approach. Earth Surface Processes and Landforms 31(11): 1424-1437, DOI 10.1002/esp.1363.10.1002/esp.1363Search in Google Scholar

Strunk H, 1997. Dating of geomorphological processes using dendroge-omorphical methods. Catena 31: 137-151, DOI 10.1016/S0341-8162(97)00031-3.10.1016/S0341-8162(97)00031-3Search in Google Scholar

Strunk H, 1992. Reconstructing debris flow frequency in the southern Alps back to AD 1500 using dendrogeomorphological analysis Erosion. Debris Flows and Environment in Mountain Regions, Proceedings of the Chengdu Symposium, China, July 1992. Inter-national Association of Hydrological Sciences Publ. 209: 299-306.Search in Google Scholar

Strunk H, 1991. Frequency distribution of debris flows in the Alps since the “Little Ice Age”. Zeitschrift für Geomorphologie 83: 71-81.Search in Google Scholar

Stumpf A, Malet JP, Kerlec N, Niethammer U and Rothmund S, 2013. Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology 186: 12-27, DOI 10.1016/j.geomorph.2012. in Google Scholar

Szymczak S, Bollschweiler M, Stoffel M, Dikau R, 2010. Debris-flow activity and snow avalanches in a steep watershed of the Valais Alps (Switzerland): dendrogeomorphic event reconstruction and identification of triggers. Geomorphology 116: 107-114, DOI 10.1016/j.geomorph.2009. in Google Scholar

Tumajer J and Treml V, 2013. Meta-analysis of dendrochronological dating of mass movements. Geochronometria 40: 59-76, DOI 10.2478/s13386-012-0021-5. 10.2478/s13386-012-0021-5Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo