1. bookVolume 24 (2016): Issue 1 (March 2016)
Journal Details
License
Format
Journal
eISSN
1898-9934
First Published
09 Jun 2008
Publication timeframe
4 times per year
Languages
English
access type Open Access

Altitude, Orthocenter of a Triangle and Triangulation

Published Online: 31 Aug 2016
Volume & Issue: Volume 24 (2016) - Issue 1 (March 2016)
Page range: 27 - 36
Received: 30 Dec 2015
Journal Details
License
Format
Journal
eISSN
1898-9934
First Published
09 Jun 2008
Publication timeframe
4 times per year
Languages
English
Summary

We introduce the altitudes of a triangle (the cevians perpendicular to the opposite sides). Using the generalized Ceva’s Theorem, we prove the existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize in Mizar [1] some formulas [2] to calculate distance using triangulation.

Keywords

MSC

MML

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.10.1007/978-3-319-20615-8Search in Google Scholar

[2] R. Campbell. La trigonométrie. Que sais-je? Presses universitaires de France, 1956.Search in Google Scholar

[3] Wenpai Chang, Yatsuka Nakamura, and Piotr Rudnicki. Inner products and angles of complex numbers. Formalized Mathematics, 11(3):275-280, 2003.Search in Google Scholar

[4] Roland Coghetto. Some facts about trigonometry and Euclidean geometry. Formalized Mathematics, 22(4):313-319, 2014. doi:10.2478/forma-2014-0031.10.2478/forma-2014-0031Search in Google Scholar

[5] Roland Coghetto. Morley’s trisector theorem. Formalized Mathematics, 23(2):75-79, 2015. doi:10.1515/forma-2015-0007.10.1515/forma-2015-0007Search in Google Scholar

[6] Roland Coghetto. Circumcenter, circumcircle and centroid of a triangle. Formalized Mathematics, 24(1):19-29, 2016. doi:10.1515/forma-2016-0002.10.1515/forma-2016-0002Search in Google Scholar

[7] H.S.M. Coxeter and S.L. Greitzer. Geometry Revisited. The Mathematical Association of America (Inc.), 1967.10.5948/UPO9780883859346Search in Google Scholar

[8] Akihiro Kubo. Lines on planes in n-dimensional Euclidean spaces. Formalized Mathematics, 13(3):389-397, 2005.Search in Google Scholar

[9] Akihiro Kubo. Lines in n-dimensional Euclidean spaces. Formalized Mathematics, 11(4): 371-376, 2003.Search in Google Scholar

[10] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidean topological space. Formalized Mathematics, 11(3):281-287, 2003.Search in Google Scholar

[11] Marco Riccardi. Heron’s formula and Ptolemy’s theorem. Formalized Mathematics, 16 (2):97-101, 2008. doi:10.2478/v10037-008-0014-2.10.2478/v10037-008-0014-2Search in Google Scholar

[12] Boris A. Shminke. Routh’s, Menelaus’ and generalized Ceva’s theorems. Formalized Mathematics, 20(2):157-159, 2012. doi:10.2478/v10037-012-0018-9.10.2478/v10037-012-0018-9Search in Google Scholar

[13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Search in Google Scholar

[14] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo