Journal Details Format
Journal
eISSN
1898-9934
First Published
09 Jun 2008
Publication timeframe
4 times per year
Languages
English Open Access

# Modelling Real World Using Stochastic Processes and Filtration

###### Received: 30 Dec 2015
Journal Details Format
Journal
eISSN
1898-9934
First Published
09 Jun 2008
Publication timeframe
4 times per year
Languages
English

First we give an implementation in Mizar  basic important definitions of stochastic finance, i.e. filtration (, pp. 183 and 185), adapted stochastic process (, p. 185) and predictable stochastic process (, p. 224). Second we give some concrete formalization and verification to real world examples.

In article  we started to define random variables for a similar presentation to the book . Here we continue this study. Next we define the stochastic process. For further definitions based on stochastic process we implement the definition of filtration.

To get a better understanding we give a real world example and connect the statements to the theorems. Other similar examples are given in , pp. 143-159 and in , pp. 110-124. First we introduce sets which give informations referring to today (Ωnow, Def.6), tomorrow (Ωfut1 , Def.7) and the day after tomorrow (Ωfut2 , Def.8). We give an overview for some events in the σ-algebras Ωnow, Ωfut1 and Ωfut2, see theorems (22) and (23).

The given events are necessary for creating our next functions. The implementations take the form of: Ωnow ⊂ Ωfut1 ⊂ Ωfut2 see theorem (24). This tells us growing informations from now to the future 1=now, 2=tomorrow, 3=the day after tomorrow.

We install functions f : {1, 2, 3, 4} → ℝ as following:

f1 : x → 100, ∀x ∈ dom f, see theorem (36),

f2 : x → 80, for x = 1 or x = 2 and

f2 : x → 120, for x = 3 or x = 4, see theorem (37),

f3 : x → 60, for x = 1, f3 : x → 80, for x = 2 and

f3 : x → 100, for x = 3, f3 : x → 120, for x = 4 see theorem (38).

These functions are real random variable: f1 over Ωnow, f2 over Ωfut1, f3 over Ωfut2, see theorems (46), (43) and (40). We can prove that these functions can be used for giving an example for an adapted stochastic process. See theorem (49).

We want to give an interpretation to these functions: suppose you have an equity A which has now (= w1) the value 100. Tomorrow A changes depending which scenario occurs − e.g. another marketing strategy. In scenario 1 (= w11) it has the value 80, in scenario 2 (= w12) it has the value 120. The day after tomorrow A changes again. In scenario 1 (= w111) it has the value 60, in scenario 2 (= w112) the value 80, in scenario 3 (= w121) the value 100 and in scenario 4 (= w122) it has the value 120. For a visualization refer to the tree:

The sets w1,w11,w12,w111,w112,w121,w122 which are subsets of {1, 2, 3, 4}, see (22), tell us which market scenario occurs. The functions tell us the values to the relevant market scenario:

For a better understanding of the definition of the random variable and the relation to the functions refer to , p. 20. For the proof of certain sets as σ-fields refer to , pp. 10-11 and , pp. 1-2.

This article is the next step to the arbitrage opportunity. If you use for example a simple probability measure, refer, for example to literature , pp. 28-34, , p. 6 and p. 232 you can calculate whether an arbitrage exists or not. Note, that the example given in literature  needs 8 instead of 4 informations as in our model. If we want to code the first 3 given time points into our model we would have the following graph, see theorems (47), (44) and (41):

The function for the “Call-Option” is given in literature , p. 28. The function is realized in Def.5. As a background, more examples for using the definition of filtration are given in , pp. 185-188.

#### MML

 Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Search in Google Scholar

 Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.10.1007/978-3-319-20615-8Search in Google Scholar

 Francesca Biagini and Daniel Rost. Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik. MATHE-LMU.DE, LMU-München(25):28-34, 2012.Search in Google Scholar

 Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Search in Google Scholar

 Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Search in Google Scholar

 Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time, volume 27 of Studies in Mathematics. de Gruyter, Berlin, 2nd edition, 2004.10.1515/9783110212075Search in Google Scholar

 Hans-Otto Georgii. Stochastik, Einführung in die Wahrscheinlichkeitstheorie und Statistik. deGruyter, Berlin, 2nd edition, 2004.Search in Google Scholar

 Peter Jaeger. Events of Borel sets, construction of Borel sets and random variables for stochastic finance. Formalized Mathematics, 22(3):199-204, 2014. doi:10.2478/forma-2014-0022.10.2478/forma-2014-0022Search in Google Scholar

 Achim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006.Search in Google Scholar

 Jürgen Kremer. Einführung in die diskrete Finanzmathematik. Springer-Verlag, Berlin, Heidelberg, New York, 2006.Search in Google Scholar

 Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.Search in Google Scholar

 Klaus Sandmann. Einführung in die Stochastik der Finanzmärkte. Springer-Verlag, Berlin, Heidelberg, New York, 2 edition, 2001.10.1007/978-3-662-06881-6Search in Google Scholar

 Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990. Search in Google Scholar

• #### The 3-Fold Product Space of Real Normed Spaces and its Properties

Recommended articles from Trend MD