Open Access

Defence reactions of mature Norway spruce (Picea abies) before and after inoculation of the blue-stain fungus Endoconidiophora polonica in a drought stress experiment


Cite

Anderegg, W. R. L., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B. et al., 2015: Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 208:674–683. Search in Google Scholar

Baier, P., 1996: Defence reactions of Norway spruce (Picea abies Karst.) to controlled attacks of Ips typographus (L.) (Col., Scolytidae) in relation to tree parameters. Journal of Applied Entomology, 120:587–593. Search in Google Scholar

Baier, P., Führer, E., Kirisits, T., Rosner, S., 2002: Defence reactions of Norway spruce against bark beetles and the associated fungus Ceratocystis polonica in secondary pure and mixed species stands. Forest Ecology and Management, 159:73–86. Search in Google Scholar

Blackwell, E., 2011: Risk assessment of bark beetle outbreaks after an avalanche occurrence in the Dürrenstein Wilderness Area. Master thesis at the University of Natural Resources and Life Sciences, Vienna (BOKU), Austria. Search in Google Scholar

Boone, C. K., Aukema, B. H., Bohlmann, J., Carroll, A. L., Raffa, K. F., 2011: Efficacy of tree defence physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Canadian Journal of Forest Research, 41: 1174–1188. Search in Google Scholar

Brignolas, F., Lacroix, B., Lieutier, F., Sauvard, D., Drouet, A., Claudot, A.-C. et al., 1995: Induced responses in phenolic metabolism in two Norway spruce clones after wounding and inoculations with Ophiostoma polonicum, a bark beetle-associated fungus. Plant Physiology, 109:821–827. Search in Google Scholar

Brignolas, F., Lieutier, F., Sauvard, D., Christiansen, E., Berryman, A. A., 1998: Phenolic predictors for Norway spruce resistance to the bark beetle Ips typographus (Coleoptera: Scolytidae) and an associated fungus, Ceratocystis polonica. Canadian Journal of Forest Research, 28:720–728. Search in Google Scholar

Bryant, J. P., Chapin, III F. S., Klein, D. R., 1983: Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory (hare Lepus capensis). Oikos, 40:357–368. Search in Google Scholar

Christiansen, E., Waring, R. H., Berryman, A. A., 1987: Resistance of conifers to bark beetle attack: searching for general relationships. Forest Ecology and Management, 22:89–106. Search in Google Scholar

Christiansen, E., Glosli, A. M., 1996: Mild Drought enhances the Resistance of Norway spruce to a Bark Beetle transmitted Blue-stain Fungus. In: Mattson, W. J., Niemelä, P., Rousi M. (eds.): Dynamics of forest herbivory: quest for pattern and principle. USDA Forest Service General Technical Report NC-183, N.C. Forest Experimental Station, St. Paul NM, 55108, p. 192–199. Search in Google Scholar

Christiansen, E., Bakke, A., 1997: Does Drought really enhance Ips typographus Epidemics? – A Scandinavian Perspective. In: Grégoire, J. C., Liebhold, A. M., Stephen, F. M., Day, K. R., Salom, S. M., (eds.): Proceedings of the IUFRO working parties S7.03.03, S7.03.05, S7.03.07 joint meeting: Integrating cultural tactics into the management of bark beetle and reforestation pests. 1–3 September 1996, Vallombrosa, Italy. General Technical Report NE-236. Radnor, PA. Northeastern Forest Experiment Station. Search in Google Scholar

Christiansen, E., Krokene, P., Berryman, A. A., Franceschi, V. R., Krekling, T., Lieutier, F. et al., 1999: Mechanical injury and fungal infection induce acquired resistance in Norway spruce. Tree Physiology, 19:399–403. Search in Google Scholar

Croisé, L., Lieutier, F., Cochard, H., Dreyer, E., 2001: Effects of drought stress and high density stem inoculations with Leptographium wingfieldii on hydraulic properties of young Scots pine trees. Tree Physiology, 21:427–436. Search in Google Scholar

De Beer, Z. W., Duong, T. A., Barnes, I., Wingfield, B. D., Wingfield, M. J., 2014: Redefining Ceratocystis and allied genera. Studies in Mycology, 79:187–219. Search in Google Scholar

Dunn, J. P., Lorio, P.L., Jr., 1993: Modified water regimes after photosynthesis, xylem water potential, cambial growth, and resistance of juvenile Pinus taeda L. to Dendroctonus frontalis (Coleoptera: Scolytidae). Physiological and Chemical Ecology, 22:948–957. Search in Google Scholar

Dreyer, E., Guérard, N., Lieutier, F., Pasquier-Barré, F., Lung, B., Piou, D., 2002: Interactions between nutrients and water supply to potted Pinus sylvestris trees and their susceptibility to several pests and pathogens. In: Lieutier, F. (ed.): Effects of Water Stress on Pine Susceptibility to various Pest and Disease Guilds. Final Scientific Report of the EU Project FAIR 3 CT96-1854, 172 p. Search in Google Scholar

Eyles, A., Bonello, P., Ganley, R., Mohammed, C., 2010: Induced resistance to pests and pathogens in trees. New Phytologist, 185:893–908. Search in Google Scholar

Ferrenberg, S., Kane, J. M., Langenhan, J. M., 2015: To grow or defend? Pine seedlings grow less but induce more defences when a key resource is limited. Tree Physiology, 35:107–111. Search in Google Scholar

Fossdal, C. G., Yaqoob, N., Krokene, P., Kvaalen, H., Solheim, H., Yakovlev, I. A., 2012: Local and systemic changes in expression of resistance genes, nb-lrr genes and their putative microRNAs in Norway spruce after wounding and inoculation with the pathogen Ceratocystis polonica. BMC Plant Biology, 12:105. Search in Google Scholar

Franceschi, V. R., Krokene, P., Christiansen, E., Krekling, T., 2005: Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist, 167:353–376. Search in Google Scholar

Führer, E., Lindenthal, J., Baier, P., 1997: Baummortalität bei Fichte: Zusammenhänge zwischen prämortaler Vitalitätsdynamik und dem Befall durch rindenbrütende Insekten. Mitteilungen Deutsche Gesellschaft für allgemeine und angewandte Entomologie, 11:645–648. Search in Google Scholar

Gasch, J., 1985: Standortserkundung und Standortskartierung mit allgemeiner Waldbauplanung im Lehrforst Ofenbach der Universität für Bodenkultur. Diploma thesis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria. Search in Google Scholar

Gaylord, M. L., Kolb, T. E., Pockman, W. T., Plaut, J. A., Yepez, E. A., Macalady, A.K. et al., 2013: Drought predisposes pinyon-juniper woodlands to insect attacks and mortality. New Phytologist, 198:567–578. Search in Google Scholar

Gaylord, M. L., Kolb, T. E., McDowell, N.G., 2015: Mechanisms of piñon pine mortality after severe drought: a retrospective study of mature trees. Tree Physiology, 35:806–816. Search in Google Scholar

Grubelnik, R., 1998: Untersuchungen über die Zusammensetzung der Mycoflora von Ips typographus L. auf ausgewählten Wald-Standorten unter besonderen Berücksichtigung der pathogenen Art Ceratocystis polonica. Diploma thesis at the University of Natural Resources and Life Sciences, Vienna (BOKU), Austria. Search in Google Scholar

Herms, D. A., Mattson, W. J., 1992: The dilemma of plants: to grow or defend. The Quarterly Review of Biology, 67:283–335. Search in Google Scholar

Hulcr, J., Atkinson, T. H., Cognato, A. I., Jordal, B. H., McKenna, D. D., 2015: Morphology, Taxonomy, and Phylogenetics of Bark Beetles. In: Vega, F. E., Hofstetter, R. W. (eds.): Bark Beetles: Biology and Ecology of Native and Invasive Species. Elsevier Inc., San Diego, p. 41–84. Search in Google Scholar

Kirisits, T., 2004: Fungal Associates of European Bark Beetles with special Emphasis on the Ophiostomatoid Fungi. In: Lieutier, F., Day, K. R., Battisti, A., Grégoire, J-C. (eds.): Bark and wood boring insects in living trees in Europe, a synthesis. Kluwer Academic Publishers. Dordrecht, Netherlands, p. 181–235. Search in Google Scholar

Kirisits, T., Dämpfle, L., Kräutler, K., 2013: Hymenoscyphus albidus is not associated with an anamorphic stage and displays slower growth than Hymenoscyphus pseudoalbidus on agar media. Forest Pathology 43, p. 386–389. Search in Google Scholar

Knebel, L., Robison, D. J., Wentworth, T. R., Klepzig, K. D., 2008: Resin flow responses to fertilization, wounding and fungal inoculation in loblolly pine (Pinus taeda) in North Carolina. Tree Physiology, 28:847–853. Search in Google Scholar

Krokene, P., Christiansen, E., Solheim, H., Franceschi, V. R., Berryman, A. A., 1999: Induced resistance to pathogenic fungi in Norway spruce. Plant Physiology, 121:565–569. Search in Google Scholar

Krokene, P., Solheim, H., Christiansen, E., 2001: Induction of disease resistance in Norway spruce (Picea abies) by necrotizing fungi. Plant Pathology, 50:230–233. Search in Google Scholar

Krokene, P., Solheim, H., Krekling, T., Christiansen, E., 2003: Inducible anatomical defence responses in Norway spruce stems and their possible role in induced resistance. Tree Physiology, 23:191–197. Search in Google Scholar

Krokene, P., Lahr, E., Dalena, L. S., Skrøppa, T., Solheim, H., 2012: Effect of phenology on susceptibility of Norway spruce (Picea abies) to fungal pathogens. Plant Pathology, 61:57–62. Search in Google Scholar

Lieutier, F., Sauvard, D., Brignolas, F., Picron, V., Yart, A., Bastien, C., Jay-Allemand, C., 1996: Changes in phenolic metabolites of scots-pine phloem induced by Ophiostoma brunneo-ciliatum, a bark-beetle-associated fungus. European Journal of Forest Pathology, 26:145–158. Search in Google Scholar

Lieutier, F., Brignolas, F., Sauvard, D., Yart, A., Galet, C., Brunet et al., 2003: Intra- and inter-provenance variability in phloem phenols of Picea abies and relationship to a bark beetle-associated fungus. Tree Physiology, 23:247–256. Search in Google Scholar

Lieutier, F., 2004: Host Resistance to Bark Beetles and its Variations. In: Lieutier, F., Day, K. R., Battisti, A., Gregoire, J. C., Evans, H. F. (eds.): Bark and wood boring insects in living trees in Europe, a synthesis. Kluwer Academic Publishers. Dordrecht, Netherlands, p. 135–180. Search in Google Scholar

Lieutier, F., Yart, A., Salle, A., 2009: Stimulation of tree defences by Ophiostomatoid fungi can explain attack success of bark beetles on conifers. Annals of Forest Science, 66:801. Search in Google Scholar

Lombardero, M. J., Ayres, M. P., Lorio, P. L., Ruel, J. J., 2000: Environmental effects on constitutive and inducible defences of Pinus taeda. Ecology Letters, 3:329–339. Search in Google Scholar

Lorio, P. L., jr., Stephen, F. M., Paine, T. D., 1995: Environment and ontogeny modify loblolly pine response to induced acute water deficits and bark beetle attacks. Forest Ecology and Management, 73:97–110. Search in Google Scholar

Marini, M., Ayres, M. P., Battisti, A., Faccoli, M., 2012: Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Climatic Change, 115:327–341. Search in Google Scholar

Martikainen, P., Siitonen, J., Kaila, L., Punttila, P., Rauh, J., 1999: Bark beetles (Coleoptera, Scolytidae) and associated beetle species in mature managed and old growth boreal forests in southern Finland. Forest Ecology and Management, 116:233–245. Search in Google Scholar

Mason, P. A., Singer, M. S., 2015: Defensive mixology: Combining acquired chemicals towards defence. Functional Ecology, 29:441–450. Search in Google Scholar

Netherer, S., Matthews, B., Katzensteiner, K., Blackwell, E., Henschke, P., Hietz, P. et al., 2015: Do water limiting conditions predispose Norway spruce to bark beetle attack? New Phytologist, 205:1128–1141. Search in Google Scholar

Niinemets, Ü., 2010: Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management, 260:1623–1639. Search in Google Scholar

Novak, M., Krajnc, A. U., Lah, L., Zupanec, N., Krasevec, N., Krizman, M. et al., 2014: Low-density Ceratocystis polonica inoculation of Norway spruce (Picea abies) triggers accumulation of monoterpenes with antifungal properties. European Journal of Forest Research, 133:573–583. Search in Google Scholar

Rosner, S., Hannrup, B., 2004: Resin canal traits relevant for constitutive resistance of Norway spruce against bark beetles: environmental and genetic variability. Forest Ecology and Management, 200:77–87. Search in Google Scholar

Ryan, M. G., Sapes, G., Sala, A., Hood, S. M., 2015: Tree physiology and bark beetles. New Phytologist, 205:955–957. Search in Google Scholar

Sallé, A., Hui, Y., Yart, A., Lieutier, F., 2008: Seasonal water stress and the resistance of Pinus yunnanensis to a bark-beetle-associated fungus. Tree Physiology, 28:679–687. Search in Google Scholar

Seidl, R., Müller, J., Hothorn, T., Bässler, C.,·Heurich, M., Kautz, M., 2015: Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. Journal of Applied Ecology, 9:1365–2664. Search in Google Scholar

Skrøppa, T., Solheim, H., Hietala, A., 2015: Variation in phloem resistance of Norway spruce clones and families to Heterobasidion parviporum and Ceratocystis polonica and its relationship to phenology and growth traits. Scandinavian Journal of Forest Research, 30:103–111. Search in Google Scholar

Winter, M. B., Baier, R., Ammer, C., 2015: Regeneration dynamics and resilience of unmanaged mountain forests in the Northern Limestone Alps following bark beetle induced spruce dieback. European Journal of Forest Research, 134:949–968. Search in Google Scholar

Zhao, T., Krokene, P., Hu, J., Christiansen, E., Björklund, N., Långström, B., Solheim, H. et al., 2011. Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner. PLoS ONE, 6: e26649. Search in Google Scholar

eISSN:
0323-1046
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other