Open Access

Wireless Energy Supply to Aircraft Structural Health Monitoring Nodes Using Ultrasonic Lamb Waves


Cite

1. Carol A. Featherston; Karen M. Holford; Rhys Pullin; Jonathan Lees; Mark Eaton; Matthew Pearson; An autonomous structural health monitoring solution. Proc. SPIE 8763, Smart Sensors, Actuators, and MEMS VI, 876302 (May 17, 2013); doi:10.1117/12.2018401.10.1117/12.2018401Search in Google Scholar

2. D. A. Shoudy, G. J. Saulnier, H. A. Scarton, P. K. Das, S. Roa-Prada, J. D. Ashdown, and A. J. Gavens, “An Ultrasonic Through-Wall Communication System with Power Harvesting,” 2007 IEEE Ultrasonics Symposium Proceedings, pp. 1848–1853, Oct. 2007.Search in Google Scholar

3. M. Kluge, T. Becker, J. Schalk, and T. Otterpohl, “Remote acoustic powering and data transmission for sensors inside of conductive envelopes,” 2008 IEEE Sensors, Oct. 2008.10.1109/ICSENS.2008.4716378Search in Google Scholar

4. T. J. Lawry, K. R. Wilt, S. Roa-Prada, J. D. Ashdown, G. J. Saulnier, H. A. Scarton, P. K. Das, and A. J. Gavens, ‘A high-temperature acoustic-electric system for power delivery and data communication through thick metallic barriers’, in Proceedings of SPIE, vol 8035, p. 80351D–80351D–12. 2011.10.1117/12.884014Search in Google Scholar

5. X. Bao, W. Biederman, S. Sherrit, M. Badescu, Y. Bar-Cohen, C. Jones, J. Aldrich, and Z. Chang, “High-power piezoelectric acoustic-electric power feedthru for metal walls,” in Proceedings of SPIE, 2008, vol. 6930, no. 1, p. 69300Z–69300Z–8.Search in Google Scholar

6. S. Moss, J. Skippen, M. Konak, I. Powlesland, and S. Galea, “Detachable acoustic electric feedthrough,” in Proceedings of SPIE, 2010, vol. 7647, no. 1, pp. 764745–764745–12.Search in Google Scholar

7. P. Larson and B. Towe, “Miniature ultrasonically powered wireless nerve cuff stimulator,” Neural Engineering (NER), 2011 5th, pp. 265–268, 2011.10.1109/NER.2011.5910538Search in Google Scholar

8. T. Maleki, N. Cao, S. H. Song, C. Kao, S.-C. A. Ko, and B. Ziaie, “An ultrasonically powered implantable micro-oxygen generator (IMOG).,” IEEE transactions on bio-medical engineering, vol. 58, no. 11, pp. 3104–11, Nov. 2011.Search in Google Scholar

9. www.ubeam.comSearch in Google Scholar

10. Lamb, H., 1917, “On waves in an elastic plate”, in Conference of the Royal Society, London, vol. XCIII, pp. 114-12810.1098/rspa.1917.0008Search in Google Scholar

11. McWade, Acoustic Emission Solutions, http://www.mcwademonitoring.co.uk/acoustic-emissions-solutions.php, [retrieved 2013-03-22]Search in Google Scholar

12. Mide, Quick Pack Piezoelectric Transducers Online Catalog, http://www.mide.com/products/qp/qp_catalog.php#sensor, [retrieved 2013-03-22]Search in Google Scholar

13. Smart Material, n.d., MFC, http://www.smart-material.com/MFC-product-main.html, [retrieved 2013-03-22]Search in Google Scholar

14. Pretorius, J., Hugo, M. & Spangler, R., 2004. A Comparison of Packaged Piezoactuators for Industrial Applications substrate piezo substrate. Mide Technology Corporation Publication, pp.1–12.10.1117/12.546789Search in Google Scholar

15. Kural, A., Pullin, R., Holford, K., Lees, J., Naylon, J., Paget, C. and Featherston, C. 2013. Design and characterization of an ultrasonic lamb-wave power delivery system. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 60(6)10.1109/TUFFC.2013.267625004476Search in Google Scholar

16. Kural, A., 2013, Ultrasonic Lamb Wave Energy Transmission System for Aircraft Structural Health Monitoring Applications. PhD thesis at Cardiff University.Search in Google Scholar

17. Haig, A. 2010. MFC Presentation (SHeMS Meeting Jul 2010).Search in Google Scholar

eISSN:
2300-7591
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other