1. bookVolume 51 (2017): Issue 3 (July 2017)
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year
Open Access

Bidirectional asymmetry in the neurovisceral communication for the cardiovascular control: New insights

Published Online: 30 Aug 2017
Volume & Issue: Volume 51 (2017) - Issue 3 (July 2017)
Page range: 157 - 167
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year

The cardiovascular control involves a bidirectional functional connection between the brain and heart. We hypothesize that this connection could be extended to other organs using endocrine and autonomic nervous systems (ANS) as communication pathways. This implies a neuroendocrine interaction controlling particularly the cardiovascular function where the enzymatic cascade of the renin-angiotensin system (RAS) plays an essential role. It acts not only through its classic endocrine connection but also the ANS. In addition, the brain is functionally, anatomically, and neurochemically asymmetric. Moreover, this asymmetry goes even beyond the brain and it includes both sides of the peripheral nervous and neuroendocrine systems. We revised the available information and analyze the asymmetrical neuroendocrine bidirectional interaction for the cardiovascular control. Negative and positive correlations involving the RAS have been observed between brain, heart, kidney, gut, and plasma in physiologic and pathologic conditions. The central role of the peptides and enzymes of the RAS within this neurovisceral communication, as well as the importance of the asymmetrical distribution of the various RAS components in the pathologies involving this connection, are particularly discussed. In conclusion, there are numerous evidences supporting the existence of a neurovisceral connection with multiorgan involvement that controls, among others, the cardiovascular function. This connection is asymmetrically organized.


Aiso M, Potter WZ, Saavedra JM. Axonal transport of angiotensin-converting enzyme in the rat striatonigral pathway. Brain Res 447, 195–199, 1988.10.1016/0006-8993(88)90986-9Search in Google Scholar

Banegas I, Prieto I, Alba F, Vives F, Araque A, Segarra AB, Duran R, de Gasparo M, Ramirez M. Angiotensinase activity is asymmetrically distributed in the amygdala, hippocampus and prefrontal cortex of the rat. Behav Brain Res 156, 321–326, 2005.10.1016/j.bbr.2004.06.002Search in Google Scholar

Banegas I, Prieto I, Vives F, Alba F, de Gasparo M, Duran R, Luna J de D, Segarra AB, Hermoso F, Ramirez M. Asymmetrical response of aminopeptidase A and nitric oxide in plasma of normotensive and hypertensive rats with experimental hemiparkinsonism. Neuropharmacology 56, 573–579, 2009.10.1016/j.neuropharm.2008.10.011Search in Google Scholar

Banegas I. Prieto I, Segarra AB, Duran R, Vives F, Alba F, Luna JD, de Gasparo M, Wangesteen R, Ruiz-Bailen M, Ramirez-Sanchez M. Blood pressure increased dramatically in hypertensive rats after left hemisphere lesions with 6-hydroxydopamine. Neurosci Lett 500, 148–150, 2011.10.1016/j.neulet.2011.06.025Search in Google Scholar

Baylis BW, Tranmer BI, Ohtaki M. Central and autonomic nervous system links to the APUD system (and their APUDomas). Semin Surg Oncol 9, 387–393, 1993.10.1002/ssu.2980090507Search in Google Scholar

Belcheva I, Belcheva S, Petkov VV, Petkov VD. Asymmetry in behavioral responses to cholecystokinin microinjected into rat nucleus accumbens and amygdala. Neuropharmacology 33, 995–1002, 1994.10.1016/0028-3908(94)90158-9Search in Google Scholar

Bernard Claude. Etude sur la physiologie du coeur. La science experimentale 316–366, 1878.Search in Google Scholar

Bonaz B. Inflammatory bowel diseases: a dysfunction of brain-gut interactions? Minerva Gastroenterol Dietol 59, 241–259, 2013.Search in Google Scholar

Booth LC, May CN, Yao ST. The role of the renal afferent and efferent nerve fibers in heart failure. Front Physiol 6, 270, 2015.10.3389/fphys.2015.00270Search in Google Scholar

Borson-Chazot F, Jordan D, Fevre-Montange M, Kopp N, Tourniaire J, Rouzioux JM, Veisseire M, Mornex R. TRH and LH-RH distribution in discrete nuclei of the human hypothalamus: evidence for a left prominence of TRH. Brain Res 382, 433–436, 1986.10.1016/0006-8993(86)91358-2Search in Google Scholar

Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Dauge V, Naudon L, Rabot S. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42, 207–217, 2014.10.1016/j.psyneuen.2014.01.01424636517Search in Google Scholar

Dicker D, Maya I, Vasilevsky V, Gofman M, Markowitz D, Beilin V, Sarid M, Yosefy C. Blood pressure variability in acute ischemic stroke depends on hemispheric stroke location. Blood Press 15, 151–156, 2006.10.1080/0803705060077275516864156Search in Google Scholar

Diz DI, Ferrario CM. Bidirectional transport of angiotensin II binding sites in the vagus nerve. Hypertension 11, I139–I143, 1988.10.1161/01.HYP.11.2_Pt_2.I139Search in Google Scholar

Dockray GJ. Enteroendocrine cell signalling via the vagus nerve. Curr Opin Pharmacol 13, 954–958, 2013.10.1016/j.coph.2013.09.00724064396Search in Google Scholar

Fandriks L. The renin-angiotensin system and the gastrointestinal mucosa. Acta Physiol (Oxf) 201, 157–167, 2011.10.1111/j.1748-1716.2010.02165.x20626369Search in Google Scholar

Fontes MA, Martins Lima A, Santos RA. Brain angiotensin-(1-7)/Mas axis: A new target to reduce the cardiovascular risk to emotional stress. Neuropeptides 56, 9–17, 2016.10.1016/j.npep.2015.10.00326584971Search in Google Scholar

Fujiwara Y, Kubo M, Kohata Y, Yamagami H, Tanigawa T, Watanabe K, Watanabe T, Tominaga K, Arakawa T. Association between left-handedness and gastrointestinal symptoms. Digestion 84, 114–118, 2011.10.1159/00032468021494042Search in Google Scholar

Gao J, Marc Y, Iturrioz X, Leroux V, Balavoine F, Llorens-Cortes C. A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase A inhibitors. Clin Sci (Lond) 127, 135–148, 2014.10.1042/CS2013039624697296Search in Google Scholar

Gerendai I, Halasz B. Asymmetry of the neuroendocrine system. News Physiol Sci 16, 92–95, 2001.10.1152/physiologyonline.2001.16.2.9211390957Search in Google Scholar

Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol 2, 94, 2011.10.3389/fphys.2011.00094323243922162969Search in Google Scholar

Grisk O. Sympatho-renal interactions in the determination of arterial pressure: role in hypertension. Exp Physiol 90, 183–187, 2005.10.1113/expphysiol.2004.02907415604108Search in Google Scholar

Hachinski VC, Oppenheimer SM, Wilson JX, Guiraudon C, Cechetto DF. Asymmetry of sympathetic consequences of experimental stroke. Arch Neurol 49, 697–702, 1992.10.1001/archneur.1992.005303100390101497495Search in Google Scholar

Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 35, 464–519, 2015.10.1002/med.21323Search in Google Scholar

Hernandez J, Prieto I, Segarra AB, de Gasparo M, Wangensteen R, Villarejo AB, Banegas I, Vives F, Cobo J, Ramirez-Sanchez M. Interaction of neuropeptidase activities in cortico-limbic regions after acute restraint stress. Behav Brain Res 287, 42–48, 2015.10.1016/j.bbr.2015.03.036Search in Google Scholar

Hidalgo M, Prieto I, Abriouel H, Cobo A, Benomar N, Galvez A, Martinez-Canamero M. Effect of virgin and refined olive oil consumption on gut microbiota. Comparison to butter. Food Res Int 64, 553–559, 2014.10.1016/j.foodres.2014.07.030Search in Google Scholar

Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T, Wang ZY, Roybon L, Melki R, Li JY. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128, 805–820, 2014.10.1007/s00401-014-1343-6Search in Google Scholar

Holzer P, Farzi A. Neuropeptides and the microbiota-gut-brain axis. Adv Exp Med Biol 817, 195–219, 2014.10.1007/978-1-4939-0897-4_9Search in Google Scholar

Ito M, Adachi-Akahane S. Inter-organ communication in the regulation of lipid metabolism: focusing on the network between the liver, intestine, and heart. J Pharmacol Sci 123, 312–317, 2013.10.1254/jphs.13R09CPSearch in Google Scholar

Jose PA, Raj D. Gut microbiota in hypertension. Curr Opin Nephrol Hypertens 24, 403–409, 2015.10.1097/MNH.0000000000000149Search in Google Scholar

Kabouridis PS, Pachnis V. Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system. J Clin Invest 125, 956–964, 2015.10.1172/JCI76308Search in Google Scholar

Kato T, Ishihara H, Shimizu A, Yokosawa H, Ishii S, Komiya Y. The axonal transport of dipeptidyl aminopeptidase II, angiotensin-converting enzyme and other peptidases in rat sciatic nerves. Neurosci Res 4, 241–248, 1987.10.1016/0168-0102(87)90016-2Search in Google Scholar

Klingelhofer J, Sander D. Cardiovascular consequences of clinical stroke. Baillieres Clin Neurol 6, 309–335, 1997.Search in Google Scholar

Kopp UC, Cicha MZ, Smith LA. Impaired responsiveness of renal mechanosensory nerves in heart failure: role of endogenous angiotensin. Am J Physiol Regul Integr Comp Physiol 284, R116–R124, 2003.10.1152/ajpregu.00336.200212388453Search in Google Scholar

Lane RD, Wallace JD, Petrosky PP, Schwartz GE, Gradman AH. Supraventricular tachycardia in patients with right hemisphere strokes. Stroke 23, 362–366, 1992.10.1161/01.STR.23.3.362Search in Google Scholar

Lee SW, Gerdes L, Tegeler CL, Shaltout HA, Tegeler CH. A bihemispheric autonomic model for traumatic stress effects on health and behavior. Front Psychol 5, 843, 2014.10.3389/fpsyg.2014.00843411802425136325Search in Google Scholar

Lis CG, Gaviria M. Vascular dementia, hypertension, and the brain. Neurol Res 19, 471–480, 1997.10.1080/01616412.1997.117408449329023Search in Google Scholar

McCraty R, Shaffer F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Selfregulatory Capacity, and Health risk. Glob Adv Health Med 4, 46–61, 2015.10.7453/gahmj.2014.073431155925694852Search in Google Scholar

Michas G, Micha R, Zampelas A. Dietary fats and cardiovascular disease: putting together the pieces of a complicated puzzle. Atherosclerosis 234, 320–328, 2014.10.1016/j.atherosclerosis.2014.03.01324727233Search in Google Scholar

Min J, Farooq MU, Greenberg E, Aloka F, Bhatt A, Kassab M, Morgan JP, Majid A. Cardiac dysfunction after left permanent cerebral focal ischemia: the brain and heart connection. Stroke 40, 2560–2563, 2009.10.1161/STROKEAHA.108.536086294376819443809Search in Google Scholar

Morris DL, Montgomery SM, Galloway ML, Pounder RE, Wakefield AJ. Inflammatory bowel disease and laterality: is left handedness a risk? Gut 49, 199–202, 2001.10.1136/gut.49.2.199172840611454794Search in Google Scholar

Nagai M, Hoshide S, Kario K. The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens 4, 174–182, 2010.10.1016/j.jash.2010.05.00120655502Search in Google Scholar

Oppenheimer S. Cerebrogenic cardiac arrhythmias: cortical lateralization and clinical significance. Clin Auton Res 16, 6–11, 2006.10.1007/s10286-006-0276-0278212216477489Search in Google Scholar

Pearse AG, Polak JM. Neural crest origin of the endocrine polypeptide (APUD) cells of the gastrointestinal tract and pancreas. Gut 12, 783–788, 1971.10.1136/gut.12.10.78314118765123259Search in Google Scholar

Prieto I, Martinez A, Martinez JM, Ramirez MJ, Vargas F, Alba, F, Ramirez M. Activities of aminopeptidases in a rat saline model of volume hypertension. Horm Metab Res 30, 246–248, 1998.10.1055/s-2007-9788769660082Search in Google Scholar

Prieto I, Villarejo AB, Segarra AB, Banegas I, Wangensteen R, Martinez-Canamero M, de Gasparo M, Vives F, Ramirez-Sanchez M. Brain, heart and kidney correlate for the control of blood pressure and water balance: role of angiotensinases. Neuroendocrinology 100, 198–208, 2014a.10.1159/00036883525323445Search in Google Scholar

Prieto I, Hidalgo M, Cobo A, Segarra AB, Ramirez M, Galvez A, Vives F, Martinez-Canamero M. BAM-PTH1038-Comparative study of the effect of virgin olive oil and butter on the intestinal microbiota and diverse parameters related to metabolic syndrome. XIVth International Congress of Bacteriology and Applied Microbiology. Montreal, Canada, International Union of Microbiological Societies Congresses 1268, 2014b.Search in Google Scholar

Ramirez M, Prieto I, Vives F, de Gasparo M, Alba F. Neuropeptides, neuropeptidases and brain asymmetry. Curr Protein Pept Sci 5, 497–506, 2004.10.2174/138920304337935015581419Search in Google Scholar

Ramirez M, Prieto I, Alba F, Vives F, Banegas I, de Gasparo M. Role of central and peripheral aminopeptidase activities in the control of blood pressure: a working hypothesis. Heart Fail Rev 13, 339–353, 2008.10.1007/s10741-007-9066-618373194Search in Google Scholar

Ramirez-Sanchez M, Prieto I, Wangensteen R, Banegas I, Segarra AB, Villarejo AB, Vives F, Cobo J, de Gasparo M. The renin-angiotensin system: new insight into old therapies. Curr Med Chem 20, 1313–1322, 2013.10.2174/092986731132010000823409710Search in Google Scholar

Ramsay DS, Woods SC. Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol Rev 121, 225–247, 2014.10.1037/a0035942416660424730599Search in Google Scholar

Rodgers H. Stroke Handb Clin Neurol 110, 427–433, 2013.10.1016/B978-0-444-52901-5.00036-823312661Search in Google Scholar

Rueda I, Banegas I, Prieto I, Wangensteen R, Segarra AB, Villarejo AB, De Gasparo M, Luna JD, Vives F, Ruiz-Bailen M, Ramirez-Sanchez M. Handedness and gender influence blood pressure in young healthy men and women: A pilot study. Endocr Regul 50, 10–15, 2016.10.1515/enr-2016-000327560631Search in Google Scholar

Saavedra JM. Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin Sci (Lond) 123, 567–590, 2012.10.1042/CS20120078350174322827472Search in Google Scholar

Sander D, Klingelhofer J. Changes of circadian blood pressure patterns and cardiovascular parameters indicate lateralization of sympathetic activation following hemispheric brain infarction. J Neurol 242, 313–318, 1995.10.1007/BF008788747643140Search in Google Scholar

Segarra AB, Ruiz-Sanz JI, Ruiz-Larrea MB, Ramirez-Sanchez M, de Gasparo M, Banegas I, Martinez-Canamero M, Vives F, Prieto I. The profile of fatty acids in frontal cortex of rats depends on the type of fat used in the diet and correlates with neuropeptidase activities. Horm Metab Res 43, 86–91, 2011.10.1055/s-0030-1269855Search in Google Scholar

Segarra AB, Prieto I, Banegas I, Villarejo AB, Wangensteen R, de Gasparo M, Vives F, Ramirez-Sanchez M. Asymmetrical effect of captopril on the angiotensinase activity in frontal cortex and plasma of the spontaneously hypertensive rats: expanding the model of neuroendocrine integration. Behav Brain Res 230, 423–427, 2012.10.1016/j.bbr.2012.02.039Search in Google Scholar

Segarra AB, Prieto I, Banegas I, Villarejo AB, Wangensteen R, de Gasparo M, Vives F, Ramirez-Sanchez M. The brain-heart connection: frontal cortex and left ventricle angiotensinase activities in control and captopril-treated hypertensive rats-a bilateral study. Int J Hypertens 2013:156179, 2013.Search in Google Scholar

Segarra AB, Hernandez J, Prieto I, de Gasparo M, Ramirez-Sanchez M. Neuropeptidase activities in plasma after acute restraint stress. Interaction with cortico-limbic areas. Acta Neuropsychiatr 28, 239–243, 2016.10.1017/neu.2016.2Search in Google Scholar

Shoemaker JK, Goswami R. Forebrain neurocircuitry associated with human reflex cardiovascular control. Front Physiol 6, 240, 2015.10.3389/fphys.2015.00240Search in Google Scholar

Shoemaker JK, Norton KN, Baker J, Luchyshyn T. Forebrain organization for autonomic cardiovascular control. Auton Neurosci 188, 5–9, 2015.10.1016/j.autneu.2014.10.022Search in Google Scholar

Smeda JS. Analysis of cerebrovascular sympathetic nerve density in relation to stroke development in spontaneously hypertensive rats. Stroke 21, 785–789, 1990.10.1161/01.STR.21.5.785Search in Google Scholar

Soros P, Hachinski V. Cardiovascular and neurological causes of sudden death after ischaemic stroke. Lancet Neurol 11, 179–188, 2012.10.1016/S1474-4422(11)70291-5Search in Google Scholar

Soufer R, Bremner JD, Arrighi JA, Cohen I, Zaret BL, Burg MM, Goldman-Rakic, P. Cerebral cortical hyperactivation in response to mental stress in patients with coronary artery disease. Proc Natl Acad Sci U S A 95, 6454–6459, 1998.10.1073/pnas.95.11.6454277949600987Search in Google Scholar

Sullivan RM, Gratton A. Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. J Neurosci 19, 2834–2840, 1999.10.1523/JNEUROSCI.19-07-02834.1999Search in Google Scholar

Tashev R, Stefanova M. Hippocampal asymmetry in angiotensin II modulatory effects on learning and memory in rats. Acta Neurobiol Exp (Wars) 75, 48–59, 2015.Search in Google Scholar

Thayer JF, Lane RD. Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev 33, 81–88, 2009.10.1016/j.neubiorev.2008.08.00418771686Search in Google Scholar

Toga AW, Thompson PM. Mapping brain asymmetry. Nat Rev Neurosci 4, 37–48, 2003.10.1038/nrn100912511860Search in Google Scholar

Villarejo AB, Ramirez-Sanchez M, Segarra AB, Martinez-Canamero M, Prieto I. Influence of extra virgin olive oil on blood pressure and kidney angiotensinase activities in spontaneously hypertensive rats. Planta Med 81, 664–669, 2015.10.1055/s-0034-138326325389059Search in Google Scholar

Williams DP, Cash C, Rankin C, Bernardi A, Koenig J, Thayer JF. Resting heart rate variability predicts self-reported difficulties in emotion regulation: a focus on different facets of emotion regulation. Front Psychol 6, 261, 2015.10.3389/fpsyg.2015.00261435424025806017Search in Google Scholar

Xavier CH, Beig MI, Ianzer D, Fontes MA, Nalivaiko E. Asymmetry in the control of cardiac performance by dorsomedial hypothalamus. Am J Physiol Regul Integr Comp Physiol 304, R664–R674, 2013.10.1152/ajpregu.00401.201223408030Search in Google Scholar

Xu B, Zheng H, Patel KP. Enhanced activation of RVLM-projecting PVN neurons in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 302, H1700–H1711, 2012.10.1152/ajpheart.00722.2011333079722307669Search in Google Scholar

Zamrini EY, Meador KJ, Loring DW, Nichols FT, Lee GP, Figueroa RE, Thompson WO. Unilateral cerebral inactivation produces differential left/right heart rate responses. Neurology 40, 1408–1411, 1990.10.1212/WNL.40.9.1408Search in Google Scholar

Zhou X, Frohlich ED. Analogy of cardiac and renal complications in essential hypertension and aged SHR or L-NAME/SHR. Med Chem 3, 61–65, 2007.10.2174/15734060777931763417266625Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo