1. bookVolume 50 (2016): Issue 4 (October 2016)
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year
Open Access

Alternative renin-angiotensin system pathways in adipose tissue and their role in the pathogenesis of obesity

Published Online: 08 Dec 2016
Volume & Issue: Volume 50 (2016) - Issue 4 (October 2016)
Page range: 229 - 240
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year

Adipose tissue expresses all the renin-angiotensin system (RAS) components that play an important role in the adipogenesis, lipid and glucose metabolism regulation in an auto/paracrine manner. The classical RAS has been found to be over-activated during the adipose tissue enlargement, thus elevated generation of angiotensin II (Ang II) may contribute to the obesity pathogenesis. The contemporary view on the RAS has become more complex with the discovery of alternative pathways, including angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor, (pro)renin receptor, as well as angiotensin IV(Ang IV)/AT4 receptor. Ang-(1-7) via Mas receptor counteracts with most of the deleterious effects of the Ang II-mediated by AT1 receptor implying its beneficial role in the glucose and lipid metabolism, oxidative stress, inflammation, and insulin resistance. Pro(renin) receptor may play a role (at least partial) in the pathogenesis of the obesity by increasing the local production of Ang II in adipose tissue as well as triggering signal transduction independently of Ang II. In this review, modulation of alternative RAS pathways in adipose tissue during obesity is discussed and the involvement of Ang-(1-7), (pro)renin and AT4 receptors in the regulation of adipose tissue homeostasis and insulin resistance is summarized.


Achard V, Boullu-Ciocca S, Desbriere R, Nguyen G, Grino M. Renin receptor expression in human adipose tissue. Am J Physiol Regul Integr Comp Physiol 292, R274–282, 2007.10.1152/ajpregu.00439.200517197644Search in Google Scholar

Achard V, Tassistro V, Boullu-Ciocca S, Grino M. Expression and nutritional regulation of the (pro)renin receptor in rat visceral adipose tissue. J Endocrinol Invest 34, 840–846, 2011.Search in Google Scholar

Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly LM, Chai SY. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 276, 48623–48626, 2001.10.1074/jbc.C10051220011707427Search in Google Scholar

Albiston AL, Morton CJ, Ng HL, Pham V, Yeatman HR, Ye S, Fernando RN, De Bundel D, Ascher DB, Mendelsohn FA, Parker MW, Chai SY. Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated aminopeptidase. FASEB J 22, 4209–4217, 2008.10.1096/fj.08-11222718716029Search in Google Scholar

Albiston AL, Diwakarla S, Fernando RN, Mountford SJ, Yeatman HR, Morgan B, Pham V, Holien JK, Parker MW, Thompson PE, Chai SY. Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers. Br J Pharmacol 164, 37–47, 2011.10.1111/j.1476-5381.2011.01402.x317185821470200Search in Google Scholar

Altirriba J, Pataky Z, Golay A, Rohner-Jeanrenaud F. [Oxytocin: metabolic effects and potential use for obesity treatment]. Rev Med Suisse 11, 97–100, 2015.Search in Google Scholar

Amri EZ. Editorial: Oxytocin: Control of Bone and Fat Mass and Metabolism. Front Endocrinol (Lausanne) 7, 27, 2016.10.3389/fendo.2016.00027481290727064967Search in Google Scholar

Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A, Rosano GM, Fabbri A, Caprio M. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem 110, 564–572, 2010.10.1002/jcb.2259820512917Search in Google Scholar

Blendea MC, Jacobs D, Stump CS, McFarlane SI, Ogrin C, Bahtyiar G, Stas S, Kumar P, Sha Q, Ferrario CM, Sowers JR. Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression. Am J Physiol Endocrinol Metab 288, E353–359, 2005.10.1152/ajpendo.00402.200415494608Search in Google Scholar

Blevins JE, Baskin DG. Translational and therapeutic potential of oxytocin as an anti-obesity strategy: Insights from rodents, nonhuman primates and humans. Physiol Behav 152, 438–449, 2015.10.1016/j.physbeh.2015.05.023623544026013577Search in Google Scholar

Brucher R, Cifuentes M, Acuna MJ, Albala C, Rojas CV. Larger anti-adipogenic effect of angiotensin II on omental preadipose cells of obese humans. Obesity (Silver Spring) 15, 1643–1646, 2007.10.1038/oby.2007.19617636081Search in Google Scholar

Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3, 267–277, 2002.10.1038/nrm78211994746Search in Google Scholar

Camerino C. Low sympathetic tone and obese phenotype in oxytocin-deficient mice. Obesity (Silver Spring) 17, 980–984, 2009.10.1038/oby.2009.1219247273Search in Google Scholar

Carroll WX, Kalupahana NS, Booker SL, Siriwardhana N, Lemieux M, Saxton AM, Moustaid-Moussa N. Angiotensinogen gene silencing reduces markers of lipid accumulation and inflammation in cultured adipocytes. Front Endocrinol (Lausanne) 4, 10, 2013.10.3389/fendo.2013.00010359368123483012Search in Google Scholar

Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12, 722–734, 2011.10.1038/nrm3198717155021952300Search in Google Scholar

Danser AH. Local renin-angiotensin systems. Mol Cell Biochem 157, 211–216, 1996.10.1007/978-1-4613-1275-8_26Search in Google Scholar

Danser AH, Deinum J. Renin, prorenin and the putative (pro)renin receptor. J Renin Angiotensin Aldosterone Syst 6, 163–165, 2005.10.3317/jraas.2005.02516525949Search in Google Scholar

de Mace do SM, Guimarares TA, Andrade JM, Guimaraes AL, Batista de Paula AM, Ferreira AJ, Sousa Santos SH. Angiotensin converting enzyme 2 activator (DIZE) modulates metabolic profiles in mice, decreasing lipogenesis. Protein Pept Lett 22, 332–340, 2015.10.2174/092986652266615020912540125666042Search in Google Scholar

Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87, E1–9, 2000.10.1161/01.RES.87.5.e1Search in Google Scholar

Eckertova M, Ondrejcakova M, Krskova K, Zorad S, Jezova D. Subchronic treatment of rats with oxytocin results in improved adipocyte differentiation and increased gene expression of factors involved in adipogenesis. Br J Pharmacol 162, 452–463, 2011.10.1111/j.1476-5381.2010.01037.x303106520846187Search in Google Scholar

Engeli S, Gorzelniak K, Kreutz R, Runkel N, Distler A, Sharma AM. Co-expression of renin-angiotensin system genes in human adipose tissue. J Hypertens 17, 555–560, 1999.10.1097/00004872-199917040-0001410404958Search in Google Scholar

Farmer SR. Transcriptional control of adipocyte formation. Cell Metab 4, 263–273, 2006.10.1016/j.cmet.2006.07.001195899617011499Search in Google Scholar

Fernando RN, Larm J, Albiston AL, Chai SY. Distribution and cellular localization of insulin-regulated aminopeptidase in the rat central nervous system. J Comp Neurol 487, 372–390, 2005.10.1002/cne.2058515906313Search in Google Scholar

Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, Lima FB. Adipose tissue as an endocrine organ: from theory to practice. J Pediatr (Rio J) 83, S192–203, 2007.10.1590/S0021-75572007000700011Search in Google Scholar

Fuentes P, Acuna MJ, Cifuentes M, Rojas CV. The anti-adipogenic effect of angiotensin II on human preadipose cells involves ERK1,2 activation and PPARG phosphorylation. J Endocrinol 206, 75–83, 2010.10.1677/JOE-10-004920453075Search in Google Scholar

Fujimoto M, Masuzaki H, Tanaka T, Yasue S, Tomita T, Okazawa K, Fujikura J, Chusho H, Ebihara K, Hayashi T, Hosoda K, Nakao K. An angiotensin II AT1 receptor antagonist, telmisartan augments glucose uptake and GLUT4 protein expression in 3T3-L1 adipocytes. FEBS Lett 576, 492–497, 2004.10.1016/j.febslet.2004.09.02715498586Search in Google Scholar

Furuhashi M, Ura N, Takizawa H, Yoshida D, Moniwa N, Murakami H, Higashiura K, Shimamoto K. Blockade of the renin-angiotensin system decreases adipocyte size with improvement in insulin sensitivity. J Hypertens 22, 1977–1982, 2004.10.1097/00004872-200410000-0002115361770Search in Google Scholar

Gajdosechova L, Krskova K, Segarra AB, Spolcova A, Suski M, Olszanecki R, Zorad S. Hypooxytocinaemia in obese Zucker rats relates to oxytocin degradation in liver and adipose tissue. J Endocrinol 220, 333–343, 2014.10.1530/JOE-13-041724389591Search in Google Scholar

Gard PR. Cognitive-enhancing effects of angiotensin IV. BMC Neurosci 9 Suppl 2, S15, 2008.10.1186/1471-2202-9-S2-S15260489919090988Search in Google Scholar

Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P, Baron AD. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 101, 2377–2386, 1998.10.1172/JCI15575088279616209Search in Google Scholar

Gembardt F, Sterner-Kock A, Imboden H, Spalteholz M, Reibitz F, Schultheiss HP, Siems WE, Walther T. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides 26, 1270–1277, 2005.10.1016/j.peptides.2005.01.009711552815949646Search in Google Scholar

Giani J F, Mayer MA, Munoz MC, Silberman EA, Hocht C, Taira CA, Gironacci MM, Turyn D, Dominici FP. Chronic infusion of angiotensin-(1-7) improves insulin resistance and hypertension induced by a high-fructose diet in rats. Am J Physiol Endocrinol Metab 296, E262–271, 2009.10.1152/ajpendo.90678.200819001546Search in Google Scholar

Gupte M, Boustany-Kari CM, Bharadwaj K, Police S, Thatcher S, Gong MC, English VL, Cassis LA. ACE2 is expressed in mouse adipocytes and regulated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol 295, R781–788, 2008.10.1152/ajpregu.00183.2008253686418650320Search in Google Scholar

Harrison DG, Cai H, Landmesser U, Griendling KK. Interactions of angiotensin II with NAD(P)H oxidase, oxidant stress and cardiovascular disease. J Renin Angiotensin Aldosterone Syst 4, 51–61, 2003.10.3317/jraas.2003.01412806586Search in Google Scholar

Huang Y, Noble NA, Zhang J, Xu C, Border WA. Renin-stimulated TGF-beta1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int 72, 45–52, 2007.10.1038/sj.ki.500224317396111Search in Google Scholar

Chai SY, Fernando R, Peck G, Ye SY, Mendelsohn FA, Jenkins TA, Albiston AL. The angiotensin IV/AT4 receptor. Cell Mol Life Sci 61, 2728–2737, 2004.10.1007/s00018-004-4246-115549174Search in Google Scholar

Chi NW, Lodish HF. Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J Biol Chem 275, 38437–38444, 2000.10.1074/jbc.M00763520010988299Search in Google Scholar

Janke J, Engeli S, Gorzelniak K, Luft FC, Sharma AM. Mature adipocytes inhibit in vitro differentiation of human preadipocytes via angiotensin type 1 receptors. Diabetes 51, 1699–1707, 2002.10.2337/diabetes.51.6.169912031955Search in Google Scholar

Jones B H, Standridge MK, Moustaid N. Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 138, 1512–1519, 1997.10.1210/endo.138.4.50389075710Search in Google Scholar

Jordens I, Molle D, Xiong W, Keller SR, McGraw TE. Insulin-regulated aminopeptidase is a key regulator of GLUT4 trafficking by controlling the sorting of GLUT4 from endosomes to specialized insulin-regulated vesicles. Mol Biol Cell 21, 2034–2044, 2010.10.1091/mbc.e10-02-0158288394720410133Search in Google Scholar

Juan CC, Chien Y, Wu LY, Yang WM, Chang CL, Lai YH, Ho PH, Kwok CF, Ho LT. Angiotensin II enhances insulin sensitivity in vitro and in vivo. Endocrinology 146, 2246–2254, 2005.10.1210/en.2004-113615705782Search in Google Scholar

Kalupahana NS, Moustaid-Moussa N. The renin-angiotensin system: a link between obesity, inflammation and insulin resistance. Obes Rev 13, 136–149, 2012.10.1111/j.1467-789X.2011.00942.x22034852Search in Google Scholar

Kandror KV, Yu L, Pilch PF. The major protein of GLUT4-containing vesicles, gp160, has aminopeptidase activity. J Biol Chem 269, 30777–30780, 1994.10.1016/S0021-9258(18)47348-6Search in Google Scholar

Karlsson C, Lindell K, Ottosson M, Sjostrom L, Carlsson B, Carlsson LM. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J Clin Endocrinol Metab 83, 3925–3929, 1998.10.1210/jc.83.11.3925Search in Google Scholar

Katagiri H, Asano T, Yamada T, Aoyama T, Fukushima Y, Kikuchi M, Kodama T, Oka Y. Acyl-coenzyme A dehydrogenases are localized on GLUT4-containing vesicles via association with insulin-regulated aminopeptidase in a manner dependent on its dileucine motif. Mol Endocrinol 16, 1049–1059, 2002.10.1210/mend.16.5.083111981039Search in Google Scholar

Keller SR, Scott HM, Mastick CC, Aebersold R, Lienhard GE. Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J Biol Chem 270, 23612–23618, 1995.10.1074/jbc.270.40.236127559527Search in Google Scholar

Keller SR. Role of the insulin-regulated aminopeptidase IRAP in insulin action and diabetes. Biol Pharm Bull 27, 761–764, 2004.10.1248/bpb.27.76115187412Search in Google Scholar

Kloting N, Bluher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord 15, 277–287, 2014.10.1007/s11154-014-9301-025344447Search in Google Scholar

Kurata A, Nishizawa H, Kihara S, Maeda N, Sonoda M, Okada T, Ohashi K, Hibuse T, Fujita K, Yasui A, Hiuge A, Kumada M, Kuriyama H, Shimomura I, Funahashi T. Blockade of Angiotensin II type-1 receptor reduces oxidative stress in adipose tissue and ameliorates adipocytokine dysregulation. Kidney Int 70, 1717–1724, 2006.10.1038/sj.ki.500181016985520Search in Google Scholar

Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne) 4, 71, 2013.10.3389/fendo.2013.00071367947523781214Search in Google Scholar

Larance M, Ramm G, Stockli J, van Dam EM, Winata S, Wasinger V, Simpson F, Graham M, Junutula JR, Guilhaus M, James DE. Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking. J Biol Chem 280, 37803–37813, 2005.10.1074/jbc.M50389720016154996Search in Google Scholar

Lastra G, Habibi J, Whaley-Connell AT, Manrique C, Hayden MR, Rehmer J, Patel K, Ferrario C, Sowers JR. Direct renin inhibition improves systemic insulin resistance and skeletal muscle glucose transport in a transgenic rodent model of tissue renin overexpression. Endocrinology 150, 2561–2568, 2009.10.1210/en.2008-1391268980919246535Search in Google Scholar

Lavoie JL, Sigmund CD. Minireview: overview of the renin-angiotensin system--an endocrine and paracrine system. Endocrinology 144, 2179–2183, 2003.10.1210/en.2003-015012746271Search in Google Scholar

Lefterova MI, Lazar MA. New developments in adipogenesis. Trends Endocrinol Metab 20, 107–114, 2009.10.1016/j.tem.2008.11.00519269847Search in Google Scholar

Lenz O, Fornoni A. Renin-angiotensin system blockade and diabetes: moving the adipose organ from the periphery to the center. Kidney Int 74, 851–853, 2008.10.1038/ki.2008.39118794817Search in Google Scholar

Liu C, Lv XH, Li HX, Cao X, Zhang F, Wang L, Yu M, Yang JK. Angiotensin-(1-7) suppresses oxidative stress and improves glucose uptake via Mas receptor in adipocytes. Acta Diabetol 49, 291–299, 2012.10.1007/s00592-011-0348-z22042130Search in Google Scholar

Maianu L, Keller SR, Garvey WT. Adipocytes exhibit abnormal subcellular distribution and translocation of vesicles containing glucose transporter 4 and insulin-regulated aminopeptidase in type 2 diabetes mellitus: implications regarding defects in vesicle trafficking. J Clin Endocrinol Metab 86, 5450–5456, 2001.10.1210/jcem.86.11.805311701721Search in Google Scholar

Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm 2013, 139239, 2013.10.1155/2013/139239388151024455420Search in Google Scholar

Marcus Y, Shefer G, Sasson K, Kohen F, Limor R, Pappo O, Nevo N, Biton I, Bach M, Berkutzki T, Fridkin M, Benayahu D, Shechter Y, Stern N. Angiotensin 1-7 as means to prevent the metabolic syndrome: lessons from the fructose-fed rat model. Diabetes 62, 1121–1130, 2013.10.2337/db12-0792360957523250359Search in Google Scholar

Mario EG, Santos SH, Ferreira AV, Bader M, Santos RA, Botion LM. Angiotensin-(1-7) Mas-receptor deficiency decreases peroxisome proliferator-activated receptor gamma expression in adipocytes. Peptides 33, 174–177, 2012.10.1016/j.peptides.2011.11.01422119778Search in Google Scholar

Matsushita K, Wu Y, Okamoto Y, Pratt RE, Dzau VJ. Local renin angiotensin expression regulates human mesenchymal stem cell differentiation to adipocytes. Hypertension 48, 1095–1102, 2006.10.1161/01.HYP.0000248211.82232.a717060512Search in Google Scholar

Mogi M, Li JM, Iwanami J, Min LJ, Tsukuda K, Iwai M, Horiuchi M. Angiotensin II type-2 receptor stimulation prevents neural damage by transcriptional activation of methyl methanesulfonate sensitive 2. Hypertension 48, 141–148, 2006.10.1161/01.HYP.0000229648.67883.f916769992Search in Google Scholar

Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM. Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol 31, 631–641, 2015.10.1016/j.cjca.2015.02.00825936489Search in Google Scholar

Morton GJ, Thatcher BS, Reidelberger RD, Ogimoto K, Wolden-H anson T, Baskin DG, Schwartz MW, Blevins JE. Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats. Am J Physiol Endocrinol Metab 302, E134–144, 2012.10.1152/ajpendo.00296.2011332808722008455Search in Google Scholar

Mountford SJ, Albiston AL, Charman WN, Ng L, Holien JK, Parker MW, Nicolazzo JA, Thompson PE, Chai SY. Synthesis, structure-activity relationships and brain uptake of a novel series of benzopyran inhibitors of insulin-regulated aminopeptidase. J Med Chem 57, 1368–1377, 2014.10.1021/jm401540f24471437Search in Google Scholar

Munoz MC, Giani JF, Burghi V, Mayer MA, Carranza A, Taira CA, Dominici FP. The Mas receptor mediates modulation of insulin signaling by angiotensin-(1-7). Regul Pept 177, 1–11, 2012.10.1016/j.regpep.2012.04.00122561450Search in Google Scholar

Nagai Y, Ichihara A, Nakano D, Kimura S, Pelisch N, Fujisawa Y, Hitomi H, Hosomi N, Kiyomoto H, Kohno M, Ito H, Nishiyama A. Possible contribution of the non-proteolytic activation of prorenin to the development of insulin resistance in fructose-fed rats. Exp Physiol 94, 1016–1023, 2009.10.1113/expphysiol.2009.04810819502292Search in Google Scholar

Netzer N, Gatterer H, Faulhaber M, Burtscher M, Pramsohler S, Pesta D. Hypoxia, Oxidative Stress and Fat. Biomolecules 5, 1143–1150, 2015.10.3390/biom5021143449671426061760Search in Google Scholar

Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer J D. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109, 1417–1427, 2002.10.1172/JCI0214276Search in Google Scholar

Nguyen G, Contrepas A. The (pro)renin receptors. J Mol Med (Berl) 86, 643–646, 2008.10.1007/s00109-008-0319-118322668Search in Google Scholar

Niwa M, Numaguchi Y, Ishii M, Kuwahata T, Kondo M, Shibata R, Miyata K, Oike Y, Murohara T. IRAP deficiency attenuates diet-induced obesity in mice through increased energy expenditure. Biochem Biophys Res Commun 457, 12–18, 2015.10.1016/j.bbrc.2014.12.07125534853Search in Google Scholar

Ogihara T, Asano T, Ando K, Chiba Y, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Katagiri H, Fukushima Y, Kikuchi M, Noguchi N, Aburatani H, Komuro I, Fujita T. Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension 40, 872–879, 2002.10.1161/01.HYP.0000040262.48405.A8Search in Google Scholar

Olivares-Reyes JA, Arellano-Plancarte A, Castillo-Hernandez JR. Angiotensin II and the development of insulin resistance: implications for diabetes. Mol Cell Endocrinol 302, 128–139, 2009.10.1016/j.mce.2008.12.01119150387Search in Google Scholar

Peck GR, Ye S, Pham V, Fernando RN, Macaulay SL, Chai SY, Albiston AL. Interaction of the Akt substrate, AS160, with the glucose transporter 4 vesicle marker protein, insulin-regulated aminopeptidase. Mol Endocrinol 20, 2576–2583, 2006.10.1210/me.2005-047616762977Search in Google Scholar

Pinterova L, Krizanova O, Zorad S. Rat epididymal fat tissue express all components of the renin-angiotensin system. Gen Physiol Biophys 19, 329–334, 2000.Search in Google Scholar

Plante E, Menaouar A, Danalache BA, Yip D, Broderick TL, Chiasson JL, Jankowski M, Gutkowska J. Oxytocin treatment prevents the cardiomyopathy observed in obese diabetic male db/db mice. Endocrinology 156, 1416–1428, 2015.10.1210/en.2014-171825562615Search in Google Scholar

Qian W, Zhu T, Tang B, Yu S, Hu H, Sun W, Pan R, Wang J, Wang D, Yang L, Mao C, Zhou L, Yuan G. Decreased circulating levels of oxytocin in obesity and newly diagnosed type 2 diabetic patients. J Clin Endocrinol Metab 99, 4683–4689, 2014.10.1210/jc.2014-220625233153Search in Google Scholar

Rogi T, Tsujimoto M, Nakazato H, Mizutani S, Tomoda Y. Human placental leucine aminopeptidase/oxytocinase. A new member of type II membrane-spanning zinc metallopeptidase family. J Biol Chem 271, 56–61, 1996.10.1074/jbc.271.1.568550619Search in Google Scholar

Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7, 885–896, 2006.10.1038/nrm206617139329Search in Google Scholar

Ross R, Fortier L, Hudson R. Separate associations between visceral and subcutaneous adipose tissue distribution, insulin and glucose levels in obese women. Diabetes Care 19, 1404–1411, 1996.10.2337/diacare.19.12.14048941472Search in Google Scholar

Santos RA, Simoese Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A 100, 8258–8263, 2003.10.1073/pnas.143286910016621612829792Search in Google Scholar

Santos SH, Fernandes LR, Mario EG, Ferreira AV, Porto LC, Alvarez-Leite JI, Botion LM, Bader M, Alenina N, Santos RA. Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes 57, 340–347, 2008.10.2337/db07-095318025412Search in Google Scholar

Santos SH, Braga JF, Mario EG, Porto LC, Rodrigues-Machado Mda G, Murari A, Botion LM, Alenina N, Bader M, Santos RA. Improved lipid and glucose metabolism in transgenic rats with increased circulating angiotensin-(1-7). Arterioscler Thromb Vasc Biol 30, 953–961, 2010.10.1161/ATVBAHA.109.20049320203301Search in Google Scholar

Santos SH, Fernandes LR, Pereira CS, Guimaraes AL, de Paula AM, Campagnole-Santos MJ, Alvarez-Leite JI, Bader M, Santos RA. Increased circulating angiotensin-(1-7) protects white adipose tissue against development of a proinflammatory state stimulated by a high-fat diet. Regul Pept 178, 64–70, 2012.10.1016/j.regpep.2012.06.00922749992Search in Google Scholar

Santos SH, Andrade JM, Fernandes LR, Sinisterra RD, Sousa FB, Feltenberger JD, Alvarez-Leite JI, Santos RA. Oral Angiotensin-(1-7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-kappaB in rats fed with high-fat diet. Peptides 46, 47–52, 2013.10.1016/j.peptides.2013.05.01023714175Search in Google Scholar

Santos SH, Giani JF, Burghi V, Miquet JG, Qadri F, Braga JF, Todiras M, Kotnik K, Alenina N, Dominici FP, Santos RA, Bader M. Oral administration of angiotensin-(1-7) ameliorates type 2 diabetes in rats. J Mol Med (Berl) 92, 255–265, 2014.10.1007/s00109-013-1087-024162089Search in Google Scholar

Sharma AM, Janke J, Gorzelniak K, Engeli S, Luft FC. Angiotensin blockade prevents type 2 diabetes by formation of fat cells. Hypertension 40, 609–611, 2002.10.1161/01.HYP.0000036448.44066.5312411451Search in Google Scholar

Schefe JH, Menk M, Reinemund J, Effertz K, Hobbs RM, Pandolfi PP, Ruiz P, Unger T, Funke-Kaiser H. A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res 99, 1355–1366, 2006.10.1161/01.RES.0000251700.00994.0d17082479Search in Google Scholar

Schling P, Loffler G. Effects of angiotensin II on adipose conversion and expression of genes of the renin-angiotensin system in human preadipocytes. Horm Metab Res 33, 189–195, 2001.10.1055/s-2001-1495111383920Search in Google Scholar

Sinha MK, Raineri-Maldonado C, Buchanan C, Pories WJ, Carter-Su C, Pilch PF, Caro JF. Adipose tissue glucose transporters in NIDDM. Decreased levels of muscle/fat isoform. Diabetes 40, 472–477, 1991.10.2337/diab.40.4.4722010047Search in Google Scholar

Skurk T, van Harmelen V, Hauner H. Angiotensin II stimulates the release of interleukin-6 and interleukin-8 from cultured human adipocytes by activation of NF-kappaB. Arterioscler Thromb Vasc Biol 24, 1199–1203, 2004.10.1161/01.ATV.0000131266.38312.2e15130920Search in Google Scholar

Takayanagi Y, Kasahara Y, Onaka T, Takahashi N, Kawada T, Nishimori K. Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport 19, 951–955, 2008.10.1097/WNR.0b013e3283021ca918520999Search in Google Scholar

Takeda M, Yamamoto K, Takemura Y, Takeshita H, Hongyo K, Kawai T, Hanasaki-Yamamoto H, Oguro R, Takami Y, Tatara Y, Takeya Y, Sugimoto K, Kamide K, Ohishi M, Rakugi H. Loss of ACE2 exaggerates high-calorie diet-induced insulin resistance by reduction of GLUT4 in mice. Diabetes 62, 223–233, 2013.10.2337/db12-0177352603122933108Search in Google Scholar

Tan P, Shamansurova Z, Bisotto S, Michel C, Gauthier MS, Rabasa-Lhoret R, Nguyen TM, Schiller PW, Gutkowska J, Lavoie JL. Impact of the prorenin/renin receptor on the development of obesity and associated cardiometabolic risk factors. Obesity (Silver Spring) 22, 2201–2209, 2014.10.1002/oby.2084425044950Search in Google Scholar

Tan P, Blais C, Nguyen TM, Schiller PW, Gutkowska J, Lavoie JL. Prorenin/renin receptor blockade promotes a healthy fat distribution in obese mice. Obesity (Silver Spring) 24, 1946–1954, 2016.10.1002/oby.21592508062027458124Search in Google Scholar

Tetzner A, Gebolys K, Meinert C, Klein S, Uhlich A, Trebicka J, Villacanas O, Walther T. G-Protein-Coupled Receptor MrgD Is a Receptor for Angiotensin-(1-7) Involving Adenylyl Cyclase, cAMP, and Phosphokinase A. Hypertension 68, 185–194, 2016.10.1161/HYPERTENSIONAHA.116.0757227217404Search in Google Scholar

Than A, Leow MK, Chen P. Control of adipogenesis by the autocrine interplays between angiotensin 1-7/Mas receptor and angiotensin II/AT1 receptor signaling pathways. J Biol Chem 288, 15520–15531, 2013.10.1074/jbc.M113.459792366871323592774Search in Google Scholar

Thatcher S, Yiannikouris F, Gupte M, Cassis L. The adipose renin-angiotensin system: role in cardiovascular disease. Mol Cell Endocrinol 302, 111–117, 2009.10.1016/j.mce.2009.01.019274881819418627Search in Google Scholar

Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner A J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275, 33238–33243, 2000.10.1074/jbc.M00261520010924499Search in Google Scholar

Tojo H, Kaieda I, Hattori H, Katayama N, Yoshimura K, Kakimo to S, Fujisawa Y, Presman E, Brooks CC, Pilch PF. The Formin family protein, formin homolog overexpressed in spleen, interacts with the insulin-responsive aminopeptidase and profilin IIa. Mol Endocrinol 17, 1216–1229, 2003.10.1210/me.2003-005612677009Search in Google Scholar

Wallis MG, Lankford MF, Keller SR. Vasopressin is a physiological substrate for the insulin-regulated aminopeptidase IRAP. Am J Physiol Endocrinol Metab 293, E1092–1102, 2007.10.1152/ajpendo.00440.200717684103Search in Google Scholar

Wang B, Wood IS, Trayhurn P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 455, 479–492, 2007.10.1007/s00424-007-0301-8204017517609976Search in Google Scholar

Wong YC, Sim MK, Lee KO. Des-aspartate-angiotensin-I and angiotensin IV improve glucose tolerance and insulin signalling in diet-induced hyperglycaemic mice. Biochem Pharmacol 82, 1198–1208, 2011.10.1016/j.bcp.2011.07.08021803028Search in Google Scholar

Wu CH, Mohammadmoradi S, Thompson J, Su W, Gong M, Nguyen G, Yiannikouris F. Adipocyte (Pro)Renin-Receptor Deficiency Induces Lipodystrophy, Liver Steatosis and Increases Blood Pressure in Male Mice. Hypertension 68, 213–219, 2016.10.1161/HYPERTENSIONAHA.115.06954Search in Google Scholar

Yamahara N, Nomura S, Suzuki T, Itakura A, Ito M, Okamoto T, Tsujimoto M, Nakazato H, Mizutani S. Placental leucine aminopeptidase/oxytocinase in maternal serum and placenta during normal pregnancy. Life Sci 66, 1401–1410, 2000.10.1016/S0024-3205(00)00451-3Search in Google Scholar

Zhou MS, Schulman IH, Zeng Q. Link between the renin-angiotensin system and insulin resistance: implications for cardiovascular disease. Vasc Med 17, 330–341, 2012.10.1177/1358863X1245009422814999Search in Google Scholar

Zorad S, Dou JT, Benicky J, Hutanu D, Tybitanclova K, Zhou J, Saavedra JM. Long-term angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARgamma. Eur J Pharmacol 552, 112–122, 2006.10.1016/j.ejphar.2006.08.062176449717064684Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo