1. bookVolume 50 (2016): Issue 3 (July 2016)
Journal Details
License
Format
Journal
eISSN
1336-0329
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Open Access

Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family

Published Online: 20 Aug 2016
Volume & Issue: Volume 50 (2016) - Issue 3 (July 2016)
Page range: 165 - 181
Journal Details
License
Format
Journal
eISSN
1336-0329
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numerous metabolic pathways, and can be misregulated in many types of cancers. Their enormous functional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and highlight some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways.

Keywords

An BS, Selva DM, Hammond GL, Rivero-Muller A, Rahman N, Leung PC. Steroid receptor coactivator-3 is required for progesterone receptor trans-activation of target genes in response to gonadotropin-releasing hormone treatment of pituitary cells. J Biol Chem 281, 20817-20824, 2006.10.1074/jbc.M60074320016728408Search in Google Scholar

Awais M, Sato M, Umezawa Y. Imaging of selective nuclear receptor modulator-induced conformational changes in the nuclear receptor to allow interaction with coactivator and corepressor proteins in living cells. Chembiochem 8, 737-743, 2007.10.1002/cbic.20070000117387660Search in Google Scholar

Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 18, 207-250, 2008.10.1615/CritRevEukarGeneExpr.v18.i3.20Search in Google Scholar

Bisson WH, Cheltsov AV, Bruey-Sedano N, Lin B, Chen J, Goldberger N, May LT, Christopoulos A, Dalton JT, Sexton PM, Zhang XK, Abagyan R. Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. Proc Natl Acad Sci USA 104, 11927-11932, 2007.10.1073/pnas.0609752104192458317606915Search in Google Scholar

Black JC, Choi JE, Lombardo SR, Carey M. A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell 23, 809-818, 2006.10.1016/j.molcel.2006.07.01816973433Search in Google Scholar

Buhr ED, Takahashi JS. Molecular components of the mammalian circadian clock. In: Handbook of Experimental Pharmacology (Ed. A Kramer, M Merrow), 217, pp. 3-27, 2013.10.1007/978-3-642-25950-0_1376286423604473Search in Google Scholar

Buzon V, Carbo LR, Estruch SB, Fletterick RJ, Estebanez-Perpina E. A conserved surface on the ligand binding domain of nuclear receptors for allosteric control. Mol Cell Endocrinol 348, 394-402, 2012.10.1016/j.mce.2011.08.01221878368Search in Google Scholar

Carlsson P, Koehler KF, Nilsson L. Glucocorticoid receptor point mutation V571M facilitates coactivator and ligand binding by structural rearrangement and stabilization. Mol Endocrinol 19, 1960-1977, 2005.10.1210/me.2004-020315774500Search in Google Scholar

Chang AK, Wu H. The role of AIB1 in breast cancer. Oncol Lett 4, 588-594, 2012.10.3892/ol.2012.803350659223226788Search in Google Scholar

Chaudhary J, Skinner MK. Basic helix-loop-helix proteins can act at the E-box within the serum response element of the c-fos promoter to influence hormone-induced promoter activation in Sertoli cells. Mol Endocrinol 13, 774-786, 1999.10.1210/mend.13.5.027110319327Search in Google Scholar

Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454-457, 1995.10.1038/377454a0Search in Google Scholar

Chopra AR, Kommagani R, Saha P, Louet JF, Salazar C, Song J, Jeong J, Finegold M, Viollet B, DeMayo F, Chan L, Moore DD, O’Malley BW. Cellular energy depletion resets whole-body energy by promoting coactivatormediated dietary fuel absorption. Cell Metab 13, 35-43, 2011.10.1016/j.cmet.2010.12.001Search in Google Scholar

Costantino G, Entrena-Guadix A, Macchiarulo A, Gioiello A, Pellicciari R. Molecular dynamics simulation of the ligand binding domain of farnesoid X receptor. Insights into helix-12 stability and coactivator peptide stabilization in response to agonist binding. J Med Chem 48, 3251-3259, 2005.10.1021/jm049182oSearch in Google Scholar

Darimont BD. Finding specificity within a conserved interaction site. Chem Biol 10, 675-676, 2003.10.1016/S1074-5521(03)00177-7Search in Google Scholar

Dasgupta S, Lonard DM, O’Malley BW. Nuclear receptor coactivators: master regulators of human health and disease. Annu Rev Med 65, 279-292, 2014.10.1146/annurev-med-051812-145316432781824111892Search in Google Scholar

Davis JN, Williams BJ, Herron JT, Galiano FJ, Meyers S. ETO-2, a new member of the ETO-family of nuclear proteins. Oncogene 18, 1375-1383, 1999.10.1038/sj.onc.120241210022820Search in Google Scholar

Demizu Y, Nagoya S, Shirakawa M, Kawamura M, Yamagata N, Sato Y, Doi M, Kurihara M. Development of stapled short helical peptides capable of inhibiting vitamin D receptor (VDR)-coactivator interactions. Bioorg Med Chem Lett 23, 4292-4296, 2013.10.1016/j.bmcl.2013.06.00223806555Search in Google Scholar

Ding L, Yang L, Wang Z, Huang W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B5 135-144, 2015.10.1016/j.apsb.2015.01.004462921726579439Search in Google Scholar

D’Rozario M, Zhang T, Waddell EA, Zhang Y, Sahin C, Sharoni M, Hu T, Nayal M, Kutty K, Liebl F, Hu W, Marenda DR. Type I bHLH Proteins Daughterless and Tcf4 Restrict Neurite Branching and Synapse Formation by Repressing Neurexin in Postmitotic Neurons. Cell Rep 15, 386-397, 2016.10.1016/j.celrep.2016.03.034494634227050508Search in Google Scholar

Dutertre M, Smith CL. Ligand-independent interactions of p160/steroid receptor coactivators and CREB-binding protein (CBP) with estrogen receptor-alpha: regulation by phosphorylation sites in the A/B region depends on other receptor domains. Mol Endocrinol 17, 1296-1314, 2003.10.1210/me.2001-031612714702Search in Google Scholar

Elhaji YA, Stoica I, Dennis S, Purisima EO, Lumbroso R, Beitel LK, Trifiro MA. Impaired helix 12 dynamics due to proline 892 substitutions in the androgen receptor are associated with complete androgen insensitivity. Hum Mol Genet 15, 921-31, 2006.10.1093/hmg/ddl00916449235Search in Google Scholar

Endler A, Chen L, Shibasaki F. Coactivator recruitment of AhR/ARNT1. Int J Mol Sci 15, 11100-11110, 2014.10.3390/ijms150611100410020124950180Search in Google Scholar

Evans RM. The steroid and thyroid hormone receptor superfamily. Science 240, 889-895, 1988.10.1126/science.328393961598813283939Search in Google Scholar

Farah MH, Olson JM, Sucic HB, Hume RI, Tapscott SJ, Turner DL. Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127, 693-702, 2000.10.1242/dev.127.4.69310648228Search in Google Scholar

Feng Q, Yi P, Wong J, O’Malley BW. Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol Cell Biol 26, 7846-7857, 2006.10.1128/MCB.00568-06163675716923966Search in Google Scholar

Fidelak J, Ferrer S, Oberlin M, Moras D, Dejaegere A, Stote RH. Dynamic correlation networks in human peroxisome proliferator-activated receptor-γ nuclear receptor protein. Eur Biophys J 39, 1503-1512, 2010.10.1007/s00249-010-0608-920496064Search in Google Scholar

Gallastegui N, Mackinnon JA, Fletterick RJ, Estebanez-Perpina E. Advances in our structural understanding of orphan nuclear receptors. Trends Biochem Sci 40, 25-35, 2015.10.1016/j.tibs.2014.11.00225499868Search in Google Scholar

Gehin M, Mark M, Dennefeld C, Dierich A, Gronemeyer H, Chambon P. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol Cell Biol 22, 5923-5937, 2002.10.1128/MCB.22.16.5923-5937.200213397212138202Search in Google Scholar

Gupte R, Muse GW, Chinenov Y, Adelman K, Rogatsky I. Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle. Proc Natl Acad Sci USA 110, 14616-14621, 2013.10.1073/pnas.1309898110376755323950223Search in Google Scholar

Han SJ, Jung SY, Malovannaya A, Kim T, Lanz RB, Qin J, O’Malley BW. A scoring system for the follow up study of nuclear receptor coactivator complexes. Nucl Recept Signal 4, e014, 2006.10.1621/nrs.04014151306816862220Search in Google Scholar

Han SJ, Hawkins SM, Begum K, Jung SY, Kovanci E, Qin J, Lydon JP, DeMayo FJ, O‘Malley BW. A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. Nature Med 18, 1102-1111, 2012.10.1038/nm.2826Search in Google Scholar

Harms MJ, Eick GN, Goswami D, Colucci JK, Griffin PR, Ortlund EA, Thornton JW. Biophysical mechanisms for large-effect mutations in the evolution of steroid hormone receptors. Proc Natl Acad Sci USA 110, 11475-11480, 2013.10.1073/pnas.1303930110Search in Google Scholar

He B, Kemppainen JA, Wilson EM. FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 275, 22986-22994, 2000.10.1074/jbc.M002807200Search in Google Scholar

Hefti MH, Francoijs KJ, de Vries SC, Dixon R, Vervoort J. The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur J Biochem 27, 1198-208, 2004.10.1111/j.1432-1033.2004.04023.xSearch in Google Scholar

Heldin CH, Lu B, Evans R, Gutkind JS. Signals and Receptors. Cold Spring Harb Perspect Biol 8, 2016.10.1101/cshperspect.a005900Search in Google Scholar

Hjalt T. Basic helix-loop-helix proteins expressed during early embryonic organogenesis. Int Rev Cytol 236, 251-280, 2004.10.1016/S0074-7696(04)36006-7Search in Google Scholar

Hong H, Kohli K, Garabedian MJ, Stallcup MR. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol May 17, 2735-2744, 1997.10.1128/MCB.17.5.27352321249111344Search in Google Scholar

Hsieh HT, Wang CH, Wu ML, Yang FM, Tai YC, Hu MC. PIASy inhibits LRH-1-dependent CYP11A1 expression by competing for SRC-1 binding. Biochem J 419, 201-209, 2009.10.1042/BJ2008140219067654Search in Google Scholar

Hsu CL, Chen YL, Yeh S, Ting HJ, Hu YC, Lin H, Wang X, Chang C. The use of phage display technique for the isolation of androgen receptor interacting peptides with (F/W)XXL(F/W) and FXXLY new signature motifs. J Biol Chem 278, 23691-23698, 2003.10.1074/jbc.M21190820012714604Search in Google Scholar

Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, Partch C, Green CB, Zhang H, Takahashi JS. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337, 189-194, 2012.10.1126/science.1222804369477822653727Search in Google Scholar

Hughes TS, Chalmers MJ, Novick S, Kuruvilla DS, Chang MR, Kamenecka TM, Rance M, Johnson BA, Burris TP, Griffin PR, Kojetin DJ. Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism. Structure 20, 139-150, 2012.10.1016/j.str.2011.10.018Search in Google Scholar

Jasuja R, Ulloor J, Yengo CM, Choong K, Istomin AY, Livesay DR, Jacobs DJ, Swerdloff RS, Miksovska J, Larsen RW, Bhasin S. Kinetic and thermodynamic characterization of dihydrotestosterone-induced conformational perturbations in androgen receptor ligand-binding domain. Mol Endocrinol 23, 1231-1241, 2009.10.1210/me.2008-0304Search in Google Scholar

Jones S. An overview of the basic helix-loop-helix proteins. Genome Biol 5, 226, 2004.Search in Google Scholar

Jung SY, Malovannaya A, Wei J, O’Malley BW, Qin J. Proteomic analysis of steady-state nuclear hormone receptor coactivator complexes. Mol Endocrinol 19, 2451-2465, 2005. 10.1210/me.2004-0476Search in Google Scholar

Kastner P, Mark M, Chambon P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83, 859-869, 1995.10.1016/0092-8674(95)90202-3Search in Google Scholar

Kim MS, Sweeney TR, Shigenaga JK, Chui LG, Moser A, Grunfeld C, Feingold KR. Tumor necrosis factor and interleukin 1 decrease RXRalpha, PPARalpha, PPARgamma, LXRalpha, and the coactivators SRC-1, PGC-1alpha, and PGC-1beta in liver cells. Metabolism 56, 267-279, 2007.10.1016/j.metabol.2006.10.007270094417224343Search in Google Scholar

King-Jones K, Thummel CS. Nuclear receptors - a perspective from Drosophila. Nature Rev Genet 6, 311-323, 2005.10.1038/nrg158115803199Search in Google Scholar

Kitabayashi I, Ida K, Morohoshi F, Yokoyama A, Mitsuhashi N, Shimizu K, Nomura N, Hayashi Y, Ohki M. The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Mol Cell Biol 18, 846-858, 1998.10.1128/MCB.18.2.8461087969447981Search in Google Scholar

Klinge CM, Jernigan SC, Mattingly KA, Risinger KE, Zhang J. Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors alpha and beta by coactivators and corepressors. J Mol Endocrinol 33, 387-410, 2004.10.1677/jme.1.0154115525597Search in Google Scholar

Kokubo T, Gong DW, Roeder RG, Horikoshi M, Nakatani Y. The Drosophila 110-kDa transcription factor TFIID subunit directly interacts with the N-terminal region of the 230-kDa subunit. Proc Natl Acad Sci USA 90, 5896-5900, 1993.10.1073/pnas.90.13.5896468338327460Search in Google Scholar

Laffitte BA, Kast HR, Nguyen CM, Zavacki AM, Moore DD, Edwards PA. Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem 275, 10638-10647, 2000.10.1074/jbc.275.14.1063810744760Search in Google Scholar

Lee YH, Coonrod SA, Kraus WL, Jelinek MA, Stallcup MR. Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci USA 102, 3611-3616, 2005.10.1073/pnas.0407159102Search in Google Scholar

Leo C, Chen JD. The SRC family of nuclear receptor coactivators. Gene 245, 1-11, 2000.10.1016/S0378-1119(00)00024-XSearch in Google Scholar

Li H, Chen JD. The receptor-associated coactivator 3 activates transcription through CREB-binding protein recruitment and autoregulation. J Biol Chem 273, 5948-5954, 1998.10.1074/jbc.273.10.59489488734Search in Google Scholar

Licht JD. AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 20, 5660-5679, 2001.10.1038/sj.onc.120459311607817Search in Google Scholar

Litterst CM, Pfitzner E. An LxxLL motif in the transactivation domain of STAT6 mediates recruitment of NCoA-1/ SRC-1. J Biol Chem 277, 36052-36060, 2002.10.1074/jbc.M20355620012138096Search in Google Scholar

Littlewood TD, Evan GI. Transcription factors 2: helix-loop-helix. Protein Profile 1, 635-709, 1994.Search in Google Scholar

Liu J, Zhou B, Yan M, Huang R, Wang Y, He Z, Yang Y, Dai C, Wang Y, Zhang F, Zhai Q. CLOCK and BMAL1 regulate muscle insulin sensitivity via SIRT1 in male mice. Endocrinology, en20152027, 2016. [Epub ahead of print] 10.1210/en.2015-202727035655Search in Google Scholar

Loinder K, Soderstrom M. Functional analyses of an LXXLL motif in nuclear receptor corepressor (N-CoR). J Steroid Biochem Mol Biol 91, 191-196, 2004.10.1016/j.jsbmb.2004.04.00615336696Search in Google Scholar

Ma X, Xu L, Wang S, Cui B, Li X, Xu J, Ning G. Deletion of steroid receptor coactivator-3 gene ameliorates hepatic steatosis. J Hepatol 55, 445-452, 2011.10.1016/j.jhep.2010.11.02221184786Search in Google Scholar

Mackinnon JA, Gallastegui N, Osguthorpe DJ, Hagler AT, Estebanez-Perpina E. Allosteric mechanisms of nuclear receptors: insights from computational simulations. Mol Cell Endocrinol 393, 75-82, 2014.10.1016/j.mce.2014.05.01724911885Search in Google Scholar

Madak-Erdogan Z, Katzenellenbogen BS. Aryl hydrocarbon receptor modulation of estrogen receptor α-mediated gene regulation by a multimeric chromatin complex involving the two receptors and the coregulator RIP140. Toxicol Sci 125, 401-411, 2012.10.1093/toxsci/kfr300326285222071320Search in Google Scholar

Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily: the second decade. Cell 83, 835-839, 1995.10.1016/0092-8674(95)90199-XSearch in Google Scholar

Mascrez B, Ghyselinck NB, Watanabe M, Annicotte JS, Chambon P, Auwerx J, Mark M. Ligand-dependent contribution of RXRbeta to cholesterol homeostasis in Sertoli cells. EMBO Rep 5, 285-290, 2004.10.1038/sj.embor.7400094Search in Google Scholar

Matthews J, Wihlen B, Thomsen J, Gustafsson JA. Aryl hydrocarbon receptor-mediated transcription: ligand-dependent recruitment of estrogen receptor alpha to 2,3,7,8-tetrachlorodibenzo-p-dioxin-responsive promoters. Mol Cell Biol 25, 5317-5328, 2005.10.1128/MCB.25.13.5317-5328.2005Search in Google Scholar

Maywood ES, Chesham JE, Smyllie NJ, Hastings MH. The Tau mutation of casein kinase 1ε sets the period of the mammalian pacemaker via regulation of Period1 or Period2 clock proteins. J Biol Rhyth 29, 110-118, 2014.10.1177/0748730414520663Search in Google Scholar

Metivier R, Penot G, Flouriot G, Pakdel F. Synergism between ERalpha transactivation function 1 (AF-1) and AF-2 mediated by steroid receptor coactivator protein-1: requirement for the AF-1 alpha-helical core and for a direct interaction between the N- and C-terminal domains. Mol Endocrinol 15, 1953-1970, 2001.10.1210/mend.15.11.0727Search in Google Scholar

Mimura J, Fujii-Kuriyama Y. Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta 1619, 263-268, 2003.10.1016/S0304-4165(02)00485-3Search in Google Scholar

Mita Y, Dodo K, Noguchi-Yachide T, Miyachi H, Makishima M, Hashimoto Y, Ishikawa M. LXXLL peptide mimetics as inhibitors of the interaction of vitamin D receptor with coactivators. Bioorg Med Chem Lett 20, 1712-1717, 2010. 10.1016/j.bmcl.2010.01.07920144545Search in Google Scholar

Molnar F, Matilainen M, Carlberg C. Structural determinants of the agonist-independent association of human peroxisome proliferator-activated receptors with coactivators. J Biol Chem 280, 26543-2656, 2005.10.1074/jbc.M50246320015888456Search in Google Scholar

Morishita Y, Miura D, Kida S. PI3K regulates BMAL1/CLOCK-mediated circadian transcription from the Dbp promoter. Biosci Biotechnol Biochem 80, 1131-1140, 2016.10.1080/09168451.2015.113688527022680Search in Google Scholar

Mouchon A, Delmotte MH, Formstecher P, Lefebvre P. Allosteric regulation of the discriminative responsiveness of retinoic acid receptor to natural and synthetic ligands by retinoid X receptor and DNA. Mol Cell Biol 19, 3073-3085, 1999.10.1128/MCB.19.4.30738410110082574Search in Google Scholar

Murphy KA, Quadro L, White LA. The intersection between the aryl hydrocarbon receptor (AhR)- and retinoic acidsignaling pathways. Vitam Horm 75, 33-67, 2007.10.1016/S0083-6729(06)75002-6Search in Google Scholar

Musille PM, Pathak MC, Lauer JL, Hudson WH, Griffin PR, Ortlund EA. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation. Nat Struct Mol Biol 19, 532-537, 2012.10.1038/nsmb.2279396098422504882Search in Google Scholar

Nagy L, Kao HY, Love JD, Li C, Banayo E, Gooch JT, Krishna V, Chatterjee K, Evans RM, Schwabe JW. Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev 13, 3209-3216, 1999.10.1101/gad.13.24.320931720810617570Search in Google Scholar

Nguyen TA, Hoivik D, Lee JE, Safe S. Interactions of nuclear receptor coactivator/corepressor proteins with the aryl hydrocarbon receptor complex. Arch Biochem Biophys 367, 250-257, 1999.10.1006/abbi.1999.128210395741Search in Google Scholar

Norman AW. Identification of a unique nuclear receptor for 9-cis retinoic acid. Nutr Rev 50, 230-231, 1992.10.1111/j.1753-4887.1992.tb01333.x1328967Search in Google Scholar

O’Malley BW. Coregulators: from whence came these ‘master genes’. Mol Endocrinol 21, 1009-1013, 2007.10.1210/me.2007-001217284664Search in Google Scholar

Onate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354-1357, 1995.10.1126/science.270.5240.13547481822Search in Google Scholar

Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, Wong J, Allred DC, Clark GM, Schiff R. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95, 353-361, 2003.10.1093/jnci/95.5.35312618500Search in Google Scholar

Osguthorpe DJ, Hagler AT. Mechanism of androgen receptor antagonism by bicalutamide in the treatment of prostate cancer. Biochemistry 50, 4105-4113, 2011.10.1021/bi102059z309917221466228Search in Google Scholar

Osguthorpe DJ, Sherman W, Hagler AT. Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering. Chem Biol Drug Des 80, 182-193, 2012.10.1111/j.1747-0285.2012.01396.x22515569Search in Google Scholar

Pappa KI, Gazouli M, Anastasiou E, Iliodromiti Z, Antsaklis A, Anagnou NP. The major circadian pacemaker ARNT-like protein-1 (BMAL1) is associated with susceptibility to gestational diabetes mellitus. Diabetes Res Clin Pract 99, 151-157, 2013.10.1016/j.diabres.2012.10.015Search in Google Scholar

Paramanik V, Thakur MK. AIB1 shows variation in interaction with ERβTAD and expression as a function of age in mouse brain. Biogerontology 12, 321-328, 2011.10.1007/s10522-011-9330-ySearch in Google Scholar

Parker MG, White R. Nuclear receptors spring into action. Nat Struct Biol 3, 113-115, 1996.10.1038/nsb0296-113Search in Google Scholar

Percharde M, Lavial F, Ng JH, Kumar V, Tomaz RA, Martin N, Yeo JC, Gil J, Prabhakar S, Ng HH, Parker MG, Azuara V. Ncoa3 functions as an essential Esrrb coactivator to sustain embryonic stem cell self-renewal and reprogramming. Genes Dev 26, 2286-2298, 2012.10.1101/gad.195545.112Search in Google Scholar

Pogenberg V, Guichou JF, Vivat-Hannah V, Kammerer S, Perez E, Germain P, de Lera AR, Gronemeyer H, Royer CA, Bourguet W. Characterization of the interaction between retinoic acid receptor/retinoid X receptor (RAR/ RXR) heterodimers and transcriptional coactivators through structural and fluorescence anisotropy studies. J Biol Chem 280, 1625-1633, 2005.10.1074/jbc.M409302200Search in Google Scholar

Ponting CP, Aravind L. PAS: a multi-functional domain family comes to light. Curr Biol 7, R674-R677, 1997.10.1016/S0960-9822(06)00352-6Search in Google Scholar

Presman DM, Alvarez LD, Levi V, Eduardo S, Digman MA, Marti MA, Veleiro AS, Burton G, Pecci A. Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids. PLoS One 5, e13279, 2010.10.1371/journal.pone.0013279295259620949009Search in Google Scholar

Pugh BF. HATs off to PIC assembly. Molec Cell 23, 776-777, 2006.10.1016/j.molcel.2006.08.02216973430Search in Google Scholar

Qin L, Liu Z, Chen H, Xu J. The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Res 69, 3819-3827, 2009.10.1158/0008-5472.CAN-08-4389291114319383905Search in Google Scholar

Quong MW, Romanow WJ, Murre C. E protein function in lymphocyte development. Annu Rev Immunol 20, 301-322, 2002.10.1146/annurev.immunol.20.092501.16204811861605Search in Google Scholar

Rachez C, Gamble M, Chang CP, Atkins GB, Lazar MA, Freedman LP. The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol Cell Biol 20, 2718-2726, 2000.10.1128/MCB.20.8.2718-2726.2000Search in Google Scholar

Radhakrishnan I, Perez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741-752, 1997. 10.1016/S0092-8674(00)80463-8Search in Google Scholar

Razeto A, Ramakrishnan V, Litterst CM, Giller K, Griesinger C, Carlomagno T, Lakomek N, Heimburg T, Lodrini M, Pfitzner E, Becker S. Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. J Mol Biol 336, 319-329, 2004.10.1016/j.jmb.2003.12.057Search in Google Scholar

Richards J, Diaz AN, Gumz ML. Clock genes in hypertension: novel insights from rodent models. Blood Pres Monitor 19, 249-254, 2014.10.1097/MBP.0000000000000060Search in Google Scholar

Rushing SR, Denison MS. The silencing mediator of retinoic acid and thyroid hormone receptors can interact with the aryl hydrocarbon (Ah) receptor but fails to repress Ah receptor-dependent gene expression. Arch Biochem Biophys 403, 189-201, 2002.10.1016/S0003-9861(02)00233-3Search in Google Scholar

Ruegg J, Swedenborg E, Wahlstrom D, Escande A, Balaguer P, Pettersson K, Pongratz I. The transcription factor aryl hydrocarbon receptor nuclear translocator functions as an estrogen receptor beta-selective coactivator, and its recruitment to alternative pathways mediates antiestrogenic effects of dioxin. Mol Endocrinol 22, 304-316, 2008.10.1210/me.2007-0128541964317991765Search in Google Scholar

Sachs LM, Shi YB. Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. Proc Natl Acad Sci USA 97, 13138-13143, 2000.10.1073/pnas.2601412972719111078533Search in Google Scholar

Sachs LM, Amano T, Rouse N, Shi YB. Involvement of histone deacetylase at two distinct steps in gene regulation during intestinal development in Xenopus laevis. Dev Dyn 222, 280-291, 2001.10.1002/dvdy.119511668605Search in Google Scholar

Sheppard HM, Harries JC, Hussain S, Bevan C, Heery DM. Analysis of the steroid receptor coactivator 1 (SRC1)- CREB binding protein interaction interface and its importance for the function of SRC1. Mol Cell Biol 21, 39-50, 2001.10.1128/MCB.21.1.39-50.20018656611113179Search in Google Scholar

Shibata H, Spencer TE, Onate SA, Jenster G, Tsai SY, Tsai MJ, O’Malley BW. Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res 52, 141-64, 1997.Search in Google Scholar

Shiota M, Yokomizo A, Tada Y, Inokuchi J, Tatsugami K, Kuroiwa K, Uchiumi T, Fujimoto N, Seki N, Naito S. Peroxisome proliferator-activated receptor γ coactivator-1α interacts with the androgen receptor (AR) and promotes prostate cancer cell growth by activating the AR. Mol Endocrinol 24, 114-127, 2009.10.1210/me.2009-0302542814519884383Search in Google Scholar

Son YL, Lee YC. Molecular determinants of the interactions between SRC-1 and LXR/RXR heterodimers. FEBS Lett 584, 3862-3866, 2010.10.1016/j.febslet.2010.07.05620682316Search in Google Scholar

Souza PC, Barra GB, Velasco LF, Ribeiro IC, Simeoni LA, Togashi M, Webb P, Neves FA, Skaf MS, Martinez L, Polikarpov I. Helix 12 dynamics and thyroid hormone receptor activity: experimental and molecular dynamics studies of Ile280 mutants. J Mol Biol 412, 882-893, 2011.10.1016/j.jmb.2011.04.01421530542Search in Google Scholar

Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O’Malley BW. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389, 194-198, 1997.10.1038/383049296499Search in Google Scholar

Stashi E, Wang L, Mani SK, York B, O’Malley BW. Research resource: loss of the steroid receptor coactivators confers neurobehavioral consequences. Mol Endocrinol 27, 1776-1787, 2013.10.1210/me.2013-1192378712723927929Search in Google Scholar

Stashi E, York B, O’Malley BW. Steroid receptor coactivators: servants and masters for control of systems metabolism. Trends Endocrinol Metab 25, 337-347, 2014.10.1016/j.tem.2014.05.004410816824953190Search in Google Scholar

Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64, 435-459, 2000.10.1128/MMBR.64.2.435-459.20009899910839822Search in Google Scholar

Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11-22, 2010.10.1016/j.ccr.2010.05.026319878720579941Search in Google Scholar

Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677-684, 1997.10.1038/426529192892Search in Google Scholar

Tyteca S, Legube G, Trouche D. To die or not to die: a HAT trick. Mol Cell 24, 807-808, 2006.10.1016/j.molcel.2006.12.00517189182Search in Google Scholar

Uhlenhaut NH, Barish GD, Yu RT, Downes M, Karunasiri M, Liddle C, Schwalie P, Hubner N, Evans RM. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol Cell 49, 158-171, 2013.10.1016/j.molcel.2012.10.013364084623159735Search in Google Scholar

Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, John S, Workman JL. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394, 498-502, 1998. 10.1038/288869697775Search in Google Scholar

van de Wijngaart DJ, van Royen ME, Hersmus R, Pike AC, Houtsmuller AB, Jenster G, Trapman J, Dubbink HJ. Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain. J Biol Chem 281, 19407-19416, 2006. 10.1074/jbc.M60256720016690616Search in Google Scholar

van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol 352, 57-69, 2012.10.1016/j.mce.2011.08.00721871527Search in Google Scholar

Vo N, Goodman RH. CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276, 13505-13508, 2001. 10.1074/jbc.R00002520011279224Search in Google Scholar

Walfish PG, Yoganathan T, Yang YF, Hong H, Butt TR, Stallcup MR. Yeast hormone response element assays detect and characterize GRIP1 coactivator-dependent activation of transcription by thyroid and retinoid nuclear receptors. Proc Natl Acad Sci USA 94, 3697-3702, 1997.10.1073/pnas.94.8.3697205039108040Search in Google Scholar

Walsh CA, Qin L, Tien JC, Young LS, Xu J. The function of steroid receptor coactivator-1 in normal tissues and cancer. Int J Biol Sci 8, 470-485, 2012.10.7150/ijbs.4125330317322419892Search in Google Scholar

Wang Y. Downregulation of liver X receptor in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines. J Lipid Res 46, 2377-2387, 2005.10.1194/jlr.M500134-JLR20016106051Search in Google Scholar

Wang Z, Burke PA. Modulation of hepatocyte nuclear factor-4alpha function by the peroxisome-proliferator-activated receptor-gamma co-activator-1alpha in the acute-phase response. Biochem J 415, 289-296, 2008.10.1042/BJ20080355355249718510493Search in Google Scholar

Wang Y, Kumar N, Crumbley C, Griffin PR, Burris TP. A second class of nuclear receptors for oxysterols: Regulation of RORalpha and RORgamma activity by 24S-hydroxycholesterol (cerebrosterol). Biochim Biophys Acta 1801, 917-923, 2010.10.1016/j.bbalip.2010.02.012288616520211758Search in Google Scholar

Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, O’Malley BW. Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1. Molec Endocrinol 25, 2041-2053, 2011.10.1210/me.2011-1222323183722053001Search in Google Scholar

Wang Z, Wu Y, Li L, Su XD. Intermolecular recognition revealed by the complex structure of human CLOCKBMAL1 basic helix-loop-helix domains with E-box DNA”. Cell Res 23, 213-224, 2013.10.1038/cr.2012.170356781323229515Search in Google Scholar

Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, Wang J, Qi R, Matzuk AJ, Song X, Madoux F, Hodder P, Chase P, Griffin PR, Zhou S, Liao L, Xu J, O’Malley BW. Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res 74, 1506-1517, 2014.10.1158/0008-5472.CAN-13-2939394747724390736Search in Google Scholar

Weber D, Wiese C, Gessler M. Hey bHLH transcription factors. Curr Top Dev Biol 110, 285-315, 2014.10.1016/B978-0-12-405943-6.00008-725248480Search in Google Scholar

Widerak M, Ghoneim C, Dumontier MF, Quesne M, Corvol MT, Savouret JF. The aryl hydrocarbon receptor activates the retinoic acid receptor alpha through SMRT antagonism. Biochimie 88, 387-397, 2006.10.1016/j.biochi.2005.11.00716480812Search in Google Scholar

Wolf G. Cellular retinoic acid-binding protein II: a coactivator of the transactivation by the retinoic acid receptor complex RAR.RXR. Nutr Rev 58, 151-153, 2000.10.1111/j.1753-4887.2000.tb01851.x10860396Search in Google Scholar

Wu JH, Gottlieb B, Batist G, Sulea T, Purisima EO, Beitel LK, Trifiro M. Bridging structural biology and genetics by computational methods: an investigation into how the R774C mutation in the AR gene can result in complete androgen insensitivity syndrome. Hum Mutat 22, 465-475, 2003.10.1002/humu.1027914635106Search in Google Scholar

Wu RC, Qin J, Yi P, Wong J, Tsai SY, Tsai MJ, O’Malley BW. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol Cell 24, 937-949, 2004.10.1016/j.molcel.2004.08.01915383283Search in Google Scholar

Wu RC, Feng Q, Lonard DM, O’Malley BW. SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129, 1125-1140, 2007.10.1016/j.cell.2007.04.03917574025Search in Google Scholar

Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras D, Gronemeyer H. A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol 3, 206, 1996.10.1038/nsb0296-2068564548Search in Google Scholar

Xiong W, Li J, Zhang E, Huang H. BMAL1 regulates transcription initiation and activates circadian clock gene expression in mammals. Biochem Biophys Res Commun 473, 1019-1025, 2016.10.1016/j.bbrc.2016.04.00927055591Search in Google Scholar

Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O‘Malley BW. The steroid receptor coactivator SRC-3 (p/CIP/ RAC3/ AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci USA 97, 6379-6384, 2000.10.1073/pnas.1201662971861110823921Search in Google Scholar

Xu J, Li Q. Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol 17, 1681-1692, 2003.10.1210/me.2003-011612805412Search in Google Scholar

Xu J, Wu RC, O’Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nature Rev Cancer 9, 615-630, 2009.10.1038/nrc2695290851019701241Search in Google Scholar

Xu X, Yang W, Wang X, Li Y, Wang Y, Ai C. Dynamic communication between androgen and coactivator: mutually induced conformational perturbations in androgen receptor ligand-binding domain. Proteins 79, 1154-1171, 2011.10.1002/prot.2295121322031Search in Google Scholar

Yamamoto KR. Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet 19, 209-215, 1985.10.1146/annurev.ge.19.120185.0012333909942Search in Google Scholar

Yan F, Yu Y, Chow DC, Palzkill T, Madoux F, Hodder P, Chase P, Griffin PR, O’Malley BW, Lonard DM. Identification of verrucarin a as a potent and selective steroid receptor coactivator-3 small molecule inhibitor. PLoS One 9, e95243, 2014.10.1371/journal.pone.0095243399062924743578Search in Google Scholar

York B, O’Malley BW. Steroid receptor coactivator (SRC) family: masters of systems biology. J Biol Chem 285, 38743-38750, 2010.10.1074/jbc.R110.193367299812920956538Search in Google Scholar

Zakharov MN, Pillai BK, Bhasin S, Ulloor J, Istomin AY, Guo C, Godzik A, Kumar R, Jasuja R. Dynamics of coregulator- induced conformational perturbations in androgen receptor ligand binding domain. Mol Cell Endocrinol 341, 1-8, 2011. 10.1016/j.mce.2011.03.00321605623Search in Google Scholar

Zelenko Z, Aghajanova L, Irwin JC, Giudice LC. Nuclear receptor, coregulator signaling, and chromatin remodeling pathways suggest involvement of the epigenome in the steroid hormone response of endometrium and abnormalities in endometriosis. Reprod Sci 19, 152-162, 2012.10.1177/1933719111415546334313222138541Search in Google Scholar

Zhang J, Kalkum M, Yamamura S, Chait BT, Roeder RG. E protein silencing by the leukemogenic AML1-ETO fusion protein. Science 305, 1286-1289, 2004.10.1126/science.109793715333839Search in Google Scholar

Zhou G, Cummings R, Li Y, Mitra S, Wilkinson HA, Elbrecht A, Hermes JD, Schaeffer JM, Smith RG, Moller DE. Nuclear receptors have distinct affinities for coactivators: characterization by fluorescence resonance energy transfer. Mol Endocrinol 12, 1594-604, 1998.10.1210/mend.12.10.01769773982Search in Google Scholar

Zhu B, Gates LA, Stashi E, Dasgupta S, Gonzales N, Dean A, Dacso CC, York B, O’Malley BW. Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading. Mol Cell 60, 769-783, 2015.10.1016/j.molcel.2015.10.024467183526611104Search in Google Scholar

Zor T, De Guzman RN, Dyson HJ, Wright PE. Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb. J Mol Biol 337, 521-534, 2004. 10.1016/j.jmb.2004.01.03815019774Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo