1. bookVolume 25 (2018): Issue 3 (September 2018)
Journal Details
First Published
08 Nov 2011
Publication timeframe
4 times per year
Open Access

Detection of Wastewater Treatment Process Disturbances in Bioreactors Using the E-Nose Technology

Published Online: 23 Oct 2018
Volume & Issue: Volume 25 (2018) - Issue 3 (September 2018)
Page range: 405 - 418
Journal Details
First Published
08 Nov 2011
Publication timeframe
4 times per year

[1] Thomas O, Theraulaz F, Cerda V, Constant D, Quevauviller P. Wastewater quality monitoring. Trends Anal Chem. 1997;16(7):419-424. DOI: 10.1016/S0165-9936(97)82859-2.10.1016/S0165-9936(97)82859-2Open DOISearch in Google Scholar

[2] Lobos-Moysa E, Dudziak M, Bodzek M. Effect of fatty acids and sterols on the efficiency of wastewater treatment by the activated sludge process in a batch system. Ochr Srod. 2010;32(2):53-56.Search in Google Scholar

[3] Pomiès M, Choubert JM, Wisniewski C, Coquery M. Modelling of micropollutant removal in biological wastewater treatments: a review. Sci Total Environ. 2013;443:733-748. DOI: 10.1016/j.scitotenv.2012. DOISearch in Google Scholar

[4] Waclawek S, Grubel K, Chlad Z, Dudziak M, Cernik M. The impact of oxone on disintegration and dewaterability of waste activated sludge. Water Environ Res. 2016;88(2):152-157. DOI: 10.2175/106143016X14504669767139.10.2175/106143016X1450466976713926803102Open DOISearch in Google Scholar

[5] Guz Ł, Sobczuk H, Suchorab Z. Odor measurement using portable device with semiconductor gas sensors array. Przem Chem. 2010;89(4):378-381.Search in Google Scholar

[6] Zhang W, Tian F, Song A, Hu Y. Research on electronic nose system based on continuous wide spectral gas sensing. Microchem J. 2018;140:1-7. DOI: 10.1016/j.microc.2018. DOISearch in Google Scholar

[7] Wilson AD, Baietto M. Applications and advances in electronic-nose technologies. Sensors. 2009;9(7):5099-5148. DOI: 10.3390/s90705099.10.3390/s90705099Open DOISearch in Google Scholar

[8] Kalman EL, Löfvendahl A, Winquist F, Lundström I. Classification of complex gas mixtures from automotive leather using an electronic nose. Anal Chim Acta. 2000;403(1-2):31-38. DOI: 10.1016/S0003-2670(99)00604-2.10.1016/S0003-2670(99)00604-2Search in Google Scholar

[9] Wolfrum EJ, Meglen RM, Peterson D, Sluiter J. Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels. Sens Actuator B. 2006;115(1):322-329. DOI: 10.1016/j.snb.2005. DOISearch in Google Scholar

[10] Krivetskiy V, Malkov I, Garshev A. Chemically modified nanocrystalline SnO2-based materials for nitrogen-containing gases detection using gas sensor array. J Alloy Compd. 2017;691:514-523. DOI: 10.1016/j.jallcom.2016. in Google Scholar

[11] Nicolas J, Cerisier C, Delva J. Potential of a network of electronic noses to assess in real time the odour annoyance in the environment of a compost facility. 3rd Biannual Int Conf Environ Odour Monitoring. 2012;30:133-138. DOI: 10.3303/CET1230023.10.3303/CET1230023Open DOISearch in Google Scholar

[12] Kateb B, Ryan MA, Homer ML, Lara LM, Yin Y, Higa K, et al. Sniffing out cancer using the JPL electronic nose: A pilot study of a novel approach to detection and differentiation of brain cancer. Neuroimage. 2009;47(S2),T5-T9. DOI: 10.1016/j.neuroimage.2009. DOISearch in Google Scholar

[13] Bruins M, Rahim Z, Bos A, van de Sande WWJ, Endtz HP, van Belkum A. Diagnosis of active tuberculosis by e-nose analysis of exhaled air. Tuberculosis. 2013;93(2):232-238. DOI: 10.1016/j.tube.2012. DOISearch in Google Scholar

[14] Baldwin EA, Bai J, Plotto A, Dea S. Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors. 2011;11:4744-4766. DOI: 10.3390/s110504744.10.3390/s110504744323140522163873Open DOISearch in Google Scholar

[15] Bonnefille M. Electronic noses: Sniffing fast, safe and objective. Cosmetics. 2007;6,9-12.Search in Google Scholar

[16] Śliwińska M, Wiśniewska P, Dymerski T, Namieśnik J, Wardencki W. Food analysis using artificial senses. J Agric Food Chem. 2014;62(7):1423-1448. DOI: 10.1021/jf403215y.10.1021/jf403215y24506450Open DOISearch in Google Scholar

[17] Wilson AD. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors. 2013;13(2):2295-2348. DOI: 10.3390/s130202295.10.3390/s130202295364943323396191Open DOISearch in Google Scholar

[18] Gebicki J, Bylinski H, Namiesnik J. Measurement techniques for assessing the olfactory impact of municipal sewage treatment plants. Environ Monit Assess. 2016;188(1):32. DOI: 10.1007/s10661-015-5024-2.10.1007/s10661-015-5024-2467981226670041Open DOISearch in Google Scholar

[19] Zhang WL, Tian FC, Song A, Hu YW. Research on electronic nose system based on continuous wide spectral gas sensing. Microchem J. 2018;140:1-7. DOI: 10.1016/j.microc.2018. DOISearch in Google Scholar

[20] Gancarz M, Wawrzyniak J, Gawrysiak-Witulska M, Wiącek D, Nawrocka A, Tadla M, et al. Application of electronic nose with MOS sensors to prediction of rapeseed quality. Measurement. 2017;103:227-234. DOI: 10.1016/j.measurement.2017. DOISearch in Google Scholar

[21] Guthrie B. Machine Olfaction. In: Buettner A, editor. Springer Handbook of Odor. Springer Handbooks. Cham: Springer; 2017. DOI: 10.1007/978-3-319-26932-0_2110.1007/978-3-319-26932-0_21Open DOISearch in Google Scholar

[22] Szulczyński B, Wasilewski T, Wojnowski W, Majchrzak T, Dymerski T, Namieśnik J, et al. Different ways to apply a measurement instrument of e-nose type to evaluate ambient air quality with respect to odour nuisance in a vicinity of municipal processing plants. Sensors. 2017;17(11):2671. DOI: 10.3390/s17112671.10.3390/s17112671571290829156597Open DOISearch in Google Scholar

[23] Sunil TT, Chaudhuri S, Sharma MU. Sensor Selection for E-Nose. In: Pal A, Pal SK, editors. Pattern Recognition and Big Data. Singapore: World Scientific Publishing Co Pte Ltd; 2018 DOI: 10.1142/9789813144552_0023.10.1142/9789813144552_0023Open DOISearch in Google Scholar

[24] Nakamoto T. Odor handling and delivery systems. In: Pearce TC, Schiffman SS, Nagle HT, Gardner JW, editors. Handbook of Machine Olfaction. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2003. DOI: 10.1002/3527601597.ch3.10.1002/3527601597.ch3Open DOISearch in Google Scholar

[25] Blanco-Rodríguez A, Camara VF, Campo F, Becherán L, Durán A, Vieira VD, et al. Development of an electronic nose to characterize odours emitted from different stages in a wastewater treatment plant. Water Res. 2018;134,92-100. DOI: 10.1016/j.watres.2018. DOISearch in Google Scholar

[26] Babko R, Kuzmina T, Jaromin-Glen K, Bieganowski A. Bioindication assessment of activated sludge adaptation in a lab-scale experiment. Ecol Chem Eng S. 2014;21(4): 605-616. DOI: 10.1515/eces-2014-0043.10.1515/eces-2014-0043Open DOISearch in Google Scholar

[27] Sytek-Szmeichel K, Podedworna J, Zubrowska-Sudol M. Efficiency of wastewater treatment in SBR and IFAS-MBSBBR systems in specified technological conditions. Water Sci Technol. 2016;73(6):1349-1356. DOI: 10.2166/wst.2015.611.10.2166/wst.2015.61127003075Open DOISearch in Google Scholar

[28] Świerczyńska A, Bohdziewicz J, Puszczało E. Treatment of industrial wastewater in the sequential membrane bioreactor. Ecol Chem Eng S. 2016;23(2):285-295. DOI: 10.1515/eces-2016-0020.10.1515/eces-2016-0020Open DOISearch in Google Scholar

[29] Capelli L, Sironi S, Céntola P, Del Rosso R, Grande MI. Electronic noses for the continuous monitoring of odours from a wastewater treatment plant at specific receptors: Focus on training methods. Sens Actuator B. 2008;131:53-62. DOI: 10.1016/j.snb.2007. DOISearch in Google Scholar

[30] Nake A, Dubreuil B, Raynaud C, Talou T. Outdoor in situ monitoring of volatile emissions from wastewater treatment plants with two portable technologies of electronic noses. Sens Actuator B. 2005;106:36-39. DOI: 10.1016/j.snb.2004. DOISearch in Google Scholar

[31] Giuliani S, Zarra T, Nicolas J, Naddeo V. An alternative approach of the e-nose training phase in odour impact assessment. Chem Eng Transact. 2012;30:139-144. DOI: 10.3303/CET1230024.10.3303/CET1230024Open DOISearch in Google Scholar

[32] Littarru P. Environmental odours assessment from waste treatment plants: dynamic olfactometry in combination with sensorial analysers “electronic noses”. Waste Manage. 2007;27(2):302-309. DOI: 10.1016/j.wasman.2006. DOISearch in Google Scholar

[33] Zarra T, Reiser M, Naddeo V, Belgiorno V, Kranert M. Odour emissions characterization from wastewater treatment plants by different measurement methods. Chem Eng Transact. 2014;40:37-42. DOI: 10.3303/CET1440007.10.3303/CET1440007Open DOISearch in Google Scholar

[34] Barczak R, Kulig A, Szydłowski M. Olfactometric methods application for odour nuisance assessment of wastewater treatment facilities in Poland. Chem Eng Transact. 2012;30,187-192. DOI: 10.3303/CET1230032.10.3303/CET1230032Open DOISearch in Google Scholar

[35] Michałkiewicz M, Kruszelnicka I, Widomska M. The variability of the concentration of bioaerosols above the chambers of biological wastewater treatment. Ecol Chem Eng S. 2018;25(2):267-278. DOI: 10.1515/eces-2018-0018.10.1515/eces-2018-0018Open DOISearch in Google Scholar

[36] Wang YJ, Lan HC, Li L, Yang KX, Qu JH, Liu JX. Chemicals and microbes in bioaerosols from reaction tanks of six wastewater treatment plants: survival factors, generation sources, and mechanisms. Sci Rep. 2018;8,9362. DOI: 10.1038/s41598-018-27652-2.29921977Search in Google Scholar

[37] Onkal-Engin G, Demir I, Engin SN. E-nose response classification of sewage odors by neural networks and fuzzy clustering. Advanc Natural Comput. 2005;3611:648-651. DOI: 10.1007/11539117_92.10.1007/11539117_92Open DOISearch in Google Scholar

[38] Stuetz RM, Fenner RA, Engin G. Assessment of odours from sewage treatment works by an electronic nose. H2S analysis and olfactometry. Water Res. 1999;33(2):453-461. DOI: 10.1016/S0043-1354(98)00246-2.10.1016/S0043-1354(98)00246-2Open DOISearch in Google Scholar

[39] Dewettinck T, Van Hege K, Verstraete W. The electronic nose as a rapid sensor for volatile compounds in treated domestic wastewater. Water Res. 2001;35(10):75-83. DOI: 10.1016/S0043-1354(00)00530-3.10.1016/S0043-1354(00)00530-3Search in Google Scholar

[40] Bourgeois W, Gardey G, Servieres M, Stuetz RM. A chemical sensor array based system for protecting wastewater treatment plants. Sens Actuator B. 2003;91:109-116. DOI: 10.1016/S0925-4005(03)00074-1.10.1016/S0925-4005(03)00074-1Open DOISearch in Google Scholar

[41] Bourgeois W, Stuetz RM. Use of a chemical sensor array for detecting pollutants in domestic wastewater. Water Res. 2002;36,4505-4512. DOI: 10.1016/S0043-1354(02)00183-5.10.1016/S0043-1354(02)00183-512418653Open DOISearch in Google Scholar

[42] Bourgeois W, Hogben P, Pike A, Stuetz RM. Development of a sensor array based measurement system for continuous monitoring of water and wastewater. Sens Actuator B. 2003;88(3):312-319. DOI: 10.1016/S0925-4005(02)00377-5.10.1016/S0925-4005(02)00377-5Open DOISearch in Google Scholar

[43] Guz Ł, Łagód G, Jaromin-Gleń K, Suchorab Z, Sobczuk H, Bieganowski A. Application of gas sensor arrays in assessment of wastewater purification effects. Sensors. 2015;15:1-21. DOI: 10.3390/s150100001.10.3390/s150100001432700425545263Open DOISearch in Google Scholar

[44] Jaromin-Gleń K, Babko R, Łagód G, Sobczuk H. Community composition and abundance of protozoa under different concentration of nitrogen compounds at “Hajdow” wastewater treatment plant. Ecol Chem Eng S. 2013;20(1):127-139. DOI: 10.2478/eces-2013-0010.10.2478/eces-2013-0010Open DOISearch in Google Scholar

[45] Guz Ł, Sobczuk H, Wasag H. Device for determination of odour chemical substances in air. Przem Chem. 2009;88(5):446-449.Search in Google Scholar

[46] TGS 2600 - for the detection of Air Contaminants. Figaro series datasheet. http://www.figarosensor.com. 2018.Search in Google Scholar

[47] Krzanowski WJ. Principles of Multivariate Analysis: A User’s Perspective. New York: Oxford University Press Inc.; 2008. ISBN 9780198507086.Search in Google Scholar

[48] Fu J, Li G, Qin Y, Freeman WJ. A pattern recognition method for electronic noses based on an olfactory neural network. Sens Actuator B. 2007;125(2):489-497. DOI: 10.1016/j.snb.2007. DOISearch in Google Scholar

[49] Smolarz A, Kotyra A, Wojcik W, Ballester J. Advanced diagnostics of industrial pulverized coal burner using optical methods and artificial intelligence. Exp Therm Fluid Sci. 2012;43:82-89. DOI: 10.1016/j.snb.2007. DOISearch in Google Scholar

[50] Brereton RG, Lloyd GR. Partial least squares discriminant analysis: taking the magic away. J Chemometr. 2014;28(4):213-225. DOI: 10.1002/cem.2609.10.1002/cem.2609Open DOISearch in Google Scholar

[51] Kamiński K, Kamiński W, Mizerski T. Application of artificial neural networks to the technical condition assessment of water supply systems. Ecol Chem Eng S. 2017;24(1),31-40. DOI: 10.1515/eces-2017-0003.10.1515/eces-2017-0003Open DOISearch in Google Scholar

[52] Macek-Kamińska K, Stemplewski S. Application of neural networks in diagnostics of chemical compounds based on their infrared spectra. Ecol Chem Eng S. 2017;24(1):107-118. DOI: 10.1515/eces-2017-0008.10.1515/eces-2017-0008Open DOISearch in Google Scholar

[53] Onkal-Engina G, Demir I, Engin SN. Determination of the relationship between sewage odour and BOD by neural networks. Environ Model Softw. 2005;20:843-850. DOI: 10.1016/j.envsoft.2004. DOISearch in Google Scholar

[54] Stuetz RM, Fenner RA, Engin G. Characterisation of wastewater using an electronic nose. Water Res. 1999;33(2):442-452. DOI: 10.1016/S0043-1354(98)00245-0.10.1016/S0043-1354(98)00245-0Open DOISearch in Google Scholar

Recommended articles from Trend MD