Open Access

Prediction of the Seasonal Changes of the Chloride Concentrations in Urban Water Reservoir


Cite

[1] Hill MJ, Biggs J, Thornhill I, Briers RA, Gledhill DG, White JC, Hassall C. Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob Change Boil. 2017;23(3):986-999. DOI: 10.1111/gcb.13401.10.1111/gcb.1340127476680Open DOISearch in Google Scholar

[2] Song K, Winters C, Xenopoulos MA, Marsalek J, Frost PC. Phosphorus cycling in urban aquatic ecosystems: connecting biological processes and water chemistry to sediment P fractions in urban stormwater management ponds. Biogeochemistry. 2017;132(1-2):203-212. DOI: 10.1007/s10533-017-0293.10.1007/s10533-017-0293Open DOISearch in Google Scholar

[3] Olguín EJ, Sánchez-Galván G, Melo FJ, Hernández VJ, González-Portela RE. Long-term assessment at field scale of Floating Treatment Wetlands for improvement of water quality and provision of ecosystem services in a eutrophic urban pond. Sci Total Environ. 2017;584:561-571. DOI: 10.1016/j.scitotenv.2017.01.072.10.1016/j.scitotenv.2017.01.07228161041Open DOISearch in Google Scholar

[4] Angyal Z, Sárközi E, Gombás Á, Kardos L. Effects of land use on chemical water quality of three small streams in Budapest. O Geosci. 2016; 8(1):133-142. DOI: 10.1515/geo-2016-0012.10.1515/geo-2016-0012Open DOISearch in Google Scholar

[5] Gutchess K, Jin L, Lautz L, Shaw SB, Zhou X, Lu Z. Chloride sources in urban and rural headwater catchments, central New York. Sci Total Environ. 2016; 565:462-472. DOI: 10.1016/j.scitotenv.2016.04.181.10.1016/j.scitotenv.2016.04.18127183460Open DOISearch in Google Scholar

[6] Corsi SR, De Cicco LA, Lutz MA, Hirsch RM. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons. Sci Total Environ. 2015;508:488-497. DOI: 10.1016/j.scitotenv.2014.12.012.10.1016/j.scitotenv.2014.12.01225514764Open DOISearch in Google Scholar

[7] Thornton JA, Slawski TM, Lin H. Salinization: the ultimate threat to temperate lakes, with particular reference to Southeastern Wisconsin (USA). Chin J Oceanol Limnol. 2015;33(6):1461-1475. DOI: 10.1007/s00343-015-4368-3.10.1007/s00343-015-4368-3Open DOISearch in Google Scholar

[8] Dojlido J, Best GA. Chemistry of Water and Water Pollution. New York: Ellis Horwood Limited. 1993; 364 pp.Search in Google Scholar

[9] Corsi SR, Graczyk DJ, Geis SW, Booth NL, Richards KD. A fresh look at road salt: aquatic toxicity and water-quality impacts on local, regional, and national scales. Environ Sci Technol. 2010;44(19):7376-7382. DOI: 10.1021/es101333u.10.1021/es101333u294730920806974Open DOISearch in Google Scholar

[10] Cieśliński R, Piekarz J, Zieliński M. Groundwater supply of lakes: the case of Lake Raduńskie Górne (northern Poland, Kashubian Lake District). Hydrol Sci J. 2016;61(13):2427-2434. DOI: 10.1080/02626667.2015.1112903.10.1080/02626667.2015.1112903Search in Google Scholar

[11] Rhodes AL, Guswa AJ. Storage and release of road-salt contamination from a calcareous lake-basin fen, western Massachusetts, USA. Sci Total Environ. 2016; 545:525-545. DOI: 10.1016/j.scitotenv.2015.12.060.10.1016/j.scitotenv.2015.12.06026760273Open DOISearch in Google Scholar

[12] Schweiger AH, Audorff V, Beierkuhnlein C. Salt in the wound: The interfering effect of road salt on acidified forest catchments. Sci Total Environ. 2015; 532:595-604.DOI: 10.1016/j.scitotenv.2015.06.034.10.1016/j.scitotenv.2015.06.03426115338Open DOISearch in Google Scholar

[13] Sibert RJ, Koretsky CM, Wyman DA. Cultural meromixis: Effects of road salt on the chemical stratification of an urban kettle lake. Chem Geol. 2015; 395:126-137. DOI: 10.1016/j.chemgeo.2014.12.010.10.1016/j.chemgeo.2014.12.010Open DOISearch in Google Scholar

[14] Novotny EV, Murphy D, Stefan HG. Increase of urban lake salinity by road deicing salt. Sci Total Environ. 2008;406(1):131-144. DOI: 10.1016/j.scitotenv.2008.07.037.10.1016/j.scitotenv.2008.07.03718762321Open DOISearch in Google Scholar

[15] Vitale SA, Robbins GA, McNaboe LA. Impacts of road salting on water quality in fractured crystalline bedrock. J Environ Qual. 2017; 46(2):288-294. DOI: 10.2134/jeq2016.10.0411.10.2134/jeq2016.10.041128380564Open DOISearch in Google Scholar

[16] Safi SK, White AK. Short and long-term forecasting using artificial neural networks for stock prices in Palestine: a comparative study. Electron J Appl Statist Anal. 2017;10(1):14-28. DOI: 10.1285/i20705948v10n1p14.10.1285/i20705948v10n1p14Open DOISearch in Google Scholar

[17] Moghim S, Bras RL. Bias correction of climate modeled temperature and precipitation using artificial neural networks. J Hydrometeorol. 2017. DOI: 10.1175/JHM-D-16-0247.1.10.1175/JHM-D-16-0247.1Open DOISearch in Google Scholar

[18] Sengorur DEB, Koklu R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J Environ Manage. 2009;90(2):1229-1235. DOI: 10.10116/j.jevman.2008.06.004.10.10116/j.jevman.2008.06.004Open DOISearch in Google Scholar

[19] Dastorani MT, Afkhami H, Sharifidarani H, Dastorani M. Application of ANN and ANFIS models on dryland precipitation prediction (case study: Yazd in Central Iran). J Appl Sci. 2010;10(20):2387-2394. DOI: 10.1007/s10661-009-1012-8.10.1007/s10661-009-1012-819543999Open DOISearch in Google Scholar

[20] Zhang L, Zhang GX, Li RR. Water quality analysis and prediction using hybrid time series and neural network models. J Agri Sci Tech. 2016;18(4):975-983. http://journals.modares.ac.ir/article_14707_3d8651ca0390d757de18ce6c8528b1a8.pdf.Search in Google Scholar

[21] Mulia IE, Asano T, Tkalich P. Retrieval of missing values in water temperature series using a data-driven model. Ear Sci Inf. 2015;8(4):787-798. DOI: 10.1007/s12145-015-0210-x.10.1007/s12145-015-0210-xOpen DOISearch in Google Scholar

[22] Heddam S, Lamda H, Filali S. Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: a comparative study. Environ Process. 2016;3(1):153-165. DOI: 10.1007/s40710-016-0129-3.10.1007/s40710-016-0129-3Open DOISearch in Google Scholar

[23] Li YL, Zhang Q, Werner AD, Yao J. Investigating a complex lake-catchment-river system using artificial neural networks: Poyang Lake (China). Hydrol Res. 2015;46(6):912-928. DOI: 10.2166/nh.2015.150.10.2166/nh.2015.150Open DOISearch in Google Scholar

[24] Cole JC, Maloney KO, Schmid M, McKenna JE. Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River. J Hydrol. 2014;519:588-598. DOI: 10.1016/j.jhydrol.2014.07.058.10.1016/j.jhydrol.2014.07.058Open DOISearch in Google Scholar

[25] Hadzima-Nyarko M, Rabi A, Šperac M. Implementation of artificial neural networks in modeling the waterair temperature relationship of the River Drava. Water Resour Manage. 2014; 28(5):1379-1394. DOI: 10.1007/s11269-014-0557-7.10.1007/s11269-014-0557-7Open DOISearch in Google Scholar

[26] Rabi A, Hadzima-Nyarko M, Šperac M. Modelling river temperature from air temperature: case of the River Drava (Croatia). Hydrolo Sci J. 2015; 60(9):1490-1507. DOI: 10.1080/02626667.2014.914215.10.1080/02626667.2014.914215Open DOISearch in Google Scholar

[27] Fajčíková K, Stehlíková B, Cvečková V, Rapant S. Application of artificial neural network in medical geochemistry. Environ Geochem Health. 2017;39(6):1513-1529. DOI: 10.1007/s10653-017-9944-3.10.1007/s10653-017-9944-328353054Open DOISearch in Google Scholar

[28] Salami SE, Ehteshami M. Application of artificial neural networks to estimating DO and salinity in San Joaquin River basin. Desal Water Treat. 2016;57(11):4888-4897. DOI: 10.1080/19443994.2014.995713.10.1080/19443994.2014.995713Open DOISearch in Google Scholar

[29] Zheng F, Wan Y, Song K, Sun D, Hedgepeth M. Reconstructing input for artificial neural networks based on embedding theory and mutual information to simulate soil pore water salinity in tidal floodplain. Water Resource Res. 2016;52:511-532 DOI: 10.1002/2014WR016875.10.1002/2014WR016875Open DOISearch in Google Scholar

[30] Chen W, Liu W, Huang W, Liu H. Prediction of salinity variations in a tidal estuary using artificial neural network and three-dimensional hydrodynamic models. Comput Water Ener Environ Eng. 2017;6:107-128. DOI: 10.4236/cweee.2017.61009.10.4236/cweee.2017.61009Open DOISearch in Google Scholar

[31] Rath JS, Hutton PH, Chen L, Roy SB. A hybrid empirical-Bayesian artificial neural network model of salinity in the San Francisco Bay-Delta estuary. Environ Model Soft. 2017;93:193-208. DOI: 10.1016/j.envsoft.2017.03.022.10.1016/j.envsoft.2017.03.022Open DOISearch in Google Scholar

[32] Dandy G. Use of artificial neural networks to forecast salinity in rivers. Artificial Neural Networks in Water Supply Engineering. ASCE. 2005;107-137.Search in Google Scholar

[33] Poleszczuk G, Miller T, Tokarz M. Ponds Syrenie Stawy in Szczecin - changes of selected water quality chemical indices. Chem Didact Ecol Metrol. 2015;20(1-2):85-96 DOI: 10.1515/cdem-2015-0009.10.1515/cdem-2015-0009Open DOISearch in Google Scholar

[34] Miller T, Tokarz M, Poleszczuk G. Stream Osowka in Szczecin - chemometric analysis of water quality indices in winter season. Acta Biol. 2014;21:91-104. http://www.wb.usz.edu.pl/attachments/article/657/6-Miller.pdf.Search in Google Scholar

[35] Poleszczuk G, Wawrzyniak W, Miller T, Tokarz M, Gasperowicz A, Adamczyk D. Syrenie Stawy in Szczecin - a comparison of the quality of waters in the winter and spring in 1994-1995, 1999-2000, 2006-2007 and 2014. In: Wawrzyniak W, Zaborowski T, editors. Ecology of Borderlands. Monography. Gorzow Wlkp.-Poznan: IBEN. 2014;122-137. DOI: 10.13140/2.1.2179.2006.10.13140/2.1.2179.2006Open DOISearch in Google Scholar

[36] Sammel A. Skład chemiczny osadów dennych zbiorników wodnych Syrenie Stawy aglomeracji szczecińskiej i możliwości ich wykorzystania. Inż Środ. 2015; 157(37):53-60.Search in Google Scholar

[37] APHA. Standard methods for the examination of water and wastewater. Washington: American Public Health Association. 2012; 1800pp.Search in Google Scholar

[38] Fahimi F, Yaseen ZM, El-shafie A. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theor Appl Climatol. 2017;128(3):875-903. DOI: 10.1007/s00704-016-1735-8.10.1007/s00704-016-1735-8Open DOISearch in Google Scholar

[39] Chen XY, Chau KW, Wang WC. A novel hybrid neural network based on continuity equation and fuzzy pattern-recognition for downstream daily river discharge forecasting. J Hydroinf. 2015; 17(5):733-744. DOI: 10.2166/hydro.2015.095.10.2166/hydro.2015.095Open DOISearch in Google Scholar

[40] Yaseen ZM, El-Shafie A, Afan HA, Hameed M, Mohtar WHMW, Hussain A. RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia. Neural Comput Applic. 2016; 27(6):1533-1542. DOI: 10.1007/s00521-015-1952-6.10.1007/s00521-015-1952-6Open DOISearch in Google Scholar

[41] Yaseen ZM, El-Shafie A, Jaafar O, Afan HA, Sayl KN. Artificial intelligence based models for stream-flow forecasting: 2000-2015. J Hydrology. 2015;530:829-844. DOI: 10.1016/j.jhydrol.2015.10.038.10.1016/j.jhydrol.2015.10.038Open DOISearch in Google Scholar

[42] Talaee PH. Multilayer perceptron with different training algorithms for streamflow forecasting. Neural Comput Applic. 2014;24(3-4):695-703. DOI: 10.1007/s00521-012-1287-5.10.1007/s00521-012-1287-5Open DOISearch in Google Scholar

[43] Trichakis IC, Nikolos IK, Karatzas GP. Optimal selection of artificial neural network parameters for the prediction of a karstic aquifer's response. Hydrol Proces. 2009; 23(20):2956-2969. DOI: 10.1002/hyp.7410.10.1002/hyp.7410Open DOISearch in Google Scholar

[44] Piotrowski AP, Napiorkowski JJ. A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. J Hydrol. 2013;476:97-111. DOI: 10.1016/j.jhydrol.2012.10.019.10.1016/j.jhydrol.2012.10.019Open DOISearch in Google Scholar

[45] Banhatti AG, Deka PC. Effects of data pre-processing on the prediction accuracy of artificial neural network model in hydrological time series. Urban Hydrol Wat Manag Soc Econ Aspec. 2016;265-275. DOI: 10.1007/978-3-319-40195-9_21.10.1007/978-3-319-40195-9_21Open DOISearch in Google Scholar

[46] Li X, Maier HR, Zecchin AC. Improved PMI-based input variable selection approach for artificial neural network and other data driven environmental and water resource models. Environ Model Soft. 2015;65:15-29. DOI: 10.1016/j.envsoft.2014.11.028.10.1016/j.envsoft.2014.11.028Open DOISearch in Google Scholar

[47] Kasiviswanathan, KS, Sudheer KP, He J. Quantification of Prediction Uncertainty in Artificial Neural Network Models. In Artificial Neural Network Modelling Springer International Publishing. 2016;145-159. DOI: 10.1007/978-3-319-28495-8_8.10.1007/978-3-319-28495-8_8Open DOISearch in Google Scholar

[48] Piotrowski AP, Napiorkowski MJ, Napiorkowski JJ, Osuch M. Comparing various artificial neural network types for water temperature prediction in rivers. J Hydrol. 2015;529:302-315. DOI: 10.1016/j.jhydrol.2015.07.044.10.1016/j.jhydrol.2015.07.044Open DOISearch in Google Scholar

[49] Antonopoulos VZ, Georgiou PE, Antonopoulos ZV. Dispersion coefficient prediction using empirical models and ANNs. Environ Proces. 2015;2(2):379-394. DOI: 10.1007/s40710-015-0074-610.1007/s40710-015-0074-6Open DOISearch in Google Scholar

[50] Kashefipour SM, Falconer RA. Longitudinal dispersion coefficients in natural channels. Water Res. 2002; 36(6):1596-1608. DOI: 10.1016/S0043-1354(01)00351-7.10.1016/S0043-1354(01)00351-7Open DOISearch in Google Scholar

[51] Seo IW, Cheong TS. Predicting longitudinal dispersion coefficient in natural streams. J Hydraulic Eng. 1998;124(1):25-32. DOI: 10.1061/(ASCE)0733-9429(1998)124:1(25).10.1061/(ASCE)0733-9429(1998)124:1(25)Open DOISearch in Google Scholar

eISSN:
1898-6196
Language:
English