1. bookVolume 23 (2016): Issue 4 (December 2016)
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

Green Synthesis: Nanoparticles and Nanofibres Based on Tree Gums for Environmental Applications

Published Online: 30 Dec 2016
Page range: 533 - 557
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

The recent advances and potential applications of nanoparticles and nanofibres for energy, water, food, biotechnology, the environment, and medicine have immensely conversed. The present review describes a ‘green’ method for the synthesis and stabilization of nanoparticles and ‘green electrospinning’ both using tree gums (arabic, tragacanth, karaya and kondagogu). Furthermore, this review focuses on the impending applications of both gum stabilized nanoparticles and functionalized membranes in remediation of toxic metals, radioactive effluents, and the adsorptive removal of nanoparticulates from aqueous environments as well as from industrial effluents. Besides, the antibacterial properties of gum derivatives, gum stabilized nanoparticles, and functionalized electrospun nanofibrous membranes will also be highlighted. The functionalities of nanofibrous membranes that can be enhanced by various plasma treatments (oxygen and methane, respectively) will also be emphasized.

Keywords

[1] Fryxell GE, Cao G. Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors. London: Imperial College Press; 2007.Search in Google Scholar

[2] Thavasi V, Singh G, Ramakrishna S, D’Amato G, Veleirinho B, Rei MF, et al. Electrospun nanofibers in energy and environmental applications. Energy Environ Sci. 2008;1:205. DOI: 10.1039/b809074m.Search in Google Scholar

[3] Vigneswaran S, Unesco. Water and Wastewater Treatment Technologies; Vol. 1. Oxford: EOLSS Publ; 2009.Search in Google Scholar

[4] Matlack AS. Introduction to green chemistry. New York/London: CRC Press; 2010.Search in Google Scholar

[5] Colvin VL. The potential environmental impact of engineered nanomaterials. Nat Biotechnol. 2003;21:1166-1170. DOI: 10.1038/nbt875.Search in Google Scholar

[6] Dwivedi AD, Dubey SP, Sillanpää M, Kwon Y-N, Lee C, Varma RS. Fate of engineered nanoparticles: Implications in the environment. Coord Chem Rev. 2015;287:64-78. DOI: 10.1016/j.ccr.2014.12.014.Search in Google Scholar

[7] Sharma VK, Filip J, Zboril R, Varma RS, Rizzello L, Pompa PP, et al. Natural inorganic nanoparticles - formation, fate, and toxicity in the environment. Chem Soc Rev. 2015;44:8410-23. DOI: 10.1039/C5CS00236B.Search in Google Scholar

[8] Grassian VH. Nanoscience and Nanotechnology: Environmental and Health Impacts. Wiley; 2008. DOI: 10.1002/9780470396612Search in Google Scholar

[9] Varma RS. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain Chem Eng. 2016;4:5866-5878. DOI: 10.1021/acssuschemeng.6b01623.Search in Google Scholar

[10] Varma RS. Nano-catalysts with magnetic core: sustainable options for greener synthesis. Sustain Chem Process 2014;2:11. DOI: 10.1186/2043-7129-2-11.Search in Google Scholar

[11] Anastas PT, Warner JC. Green Chemistry: Theory and Practice. New York: Oxford University Press; 1998.Search in Google Scholar

[12] Shamim N, Sharma VK, editors. Sustainable Nanotechnology and the Environment: Advances and Achievements; vol. 1124. Washington, DC: American Chemical Society; 2013. DOI: 10.1021/bk-2013-1124.Search in Google Scholar

[13] Luque R, Varma RS, editors. Sustainable Preparation of Metal Nanoparticles. Cambridge: Royal Society of Chemistry; 2012. DOI: 10.1039/9781849735469.Search in Google Scholar

[14] Virkutyte J, Varma RS, Kumar V, Yadav SK, Dahl JA, Maddux BLS, et al. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci. 2011;2:837-846. DOI: 10.1039/C0SC00338G.Search in Google Scholar

[15] Iravani S, Klefenz H, Chan WCW, Nie S, Tian Z, Ren B, et al. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638. DOI: 10.1039/c1gc15386b.Search in Google Scholar

[16] Hebbalalu D, Lalley J, Nadagouda MN, Varma RS. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng. 2013;1:703-712. DOI: 10.1021/sc4000362.Search in Google Scholar

[17] Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003; 125(46), 13940-13941. DOI: 10.1021/JA029267J.Search in Google Scholar

[18] Pereao OK, Bode-Aluko C, Ndayambaje G, Fatoba O, Petrik LF. Electrospinning: Polymer nanofibre adsorbent applications for metal ion removal. J Polym Environ. 2016:1-15. DOI: 10.1007/s10924-016-0896-y.Search in Google Scholar

[19] Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S. Recent advances in polymer nanofibers. J Nanosci Nanotechnol. 2004;4:52-65.Search in Google Scholar

[20] Greiner A, Wendorff JH. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew Chemie Int Ed. 2007;46:5670-5703. DOI: 10.1002/anie.200604646.Search in Google Scholar

[21] Nie H, He A, Zheng J, Xu S, Li J, Han CC. effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules. 2008;9:1362-1365. DOI: 10.1021/bm701349j.Search in Google Scholar

[22] Zain NM, Stapley AGF, Shama G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr Polym. 2014;112:195-202. DOI: 10.1016/j.carbpol.2014.05.081.Search in Google Scholar

[23] Vasileva P, Donkova B, Karadjova I, Dushkin C. Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide. Colloids Surfaces A Physicochem Eng Asp. 2011;382:203-10. DOI: 10.1016/j.colsurfa.2010.11.060.Search in Google Scholar

[24] Sarma TK, Chattopadhyay A. Starch-mediated shape-selective synthesis of Au nanoparticles with tunable longitudinal plasmon resonance. Langmuir. 2004;20(9):3520-3524. DOI: 10.1021/LA049970G.Search in Google Scholar

[25] Lokanathan AR, Uddin KMA, Rojas OJ, Laine J. Cellulose nanocrystal-mediated synthesis of silver nanoparticles: role of sulfate groups in nucleation phenomena. Biomacromolecules. 2014;15:373-379. DOI: 10.1021/bm401613h.Search in Google Scholar

[26] Kora AJ, Sashidhar RB. Antibacterial activity of biogenic silver nanoparticles synthesized with gum ghatti and gum olibanum: a comparative study. J Antibiot. 2015;68:88-97. DOI: 10.1038/ja.2014.114.Search in Google Scholar

[27] Wu C-C, Chen D-H. Facile green synthesis of gold nanoparticles with gum arabic as a stabilizing agent and reducing agent. Gold Bull. 2010;43:234-240. DOI: 10.1007/BF03214993.Search in Google Scholar

[28] Kong H, Yang J, Zhang Y, Fang Y, Nishinari K, Phillips GO. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int J Biol Macromol. 2014;65:155-162. DOI: 10.1016/j.ijbiomac.2014.01.011.Search in Google Scholar

[29] Vinod VTP, Sashidhar RB, Sukumar AA. Competitive adsorption of toxic heavy metal contaminants by gum kondagogu (Cochlospermum gossypium): A natural hydrocolloid. Colloids Surfaces B Biointerfaces. 2010;75:490-495. DOI: 10.1016/j.colsurfb.2009.09.023.Search in Google Scholar

[30] Peralta-Videa JR, Huang Y, Parsons JG, Zhao L, Lopez-Moreno L, Hernandez-Viezcas JA, et al. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng. 2016;1:4. DOI: 10.1007/s41204-016-0004-5.Search in Google Scholar

[31] Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog. 2003;19:1627-1631. DOI: 10.1021/bp034070w.Search in Google Scholar

[32] Shankar SS, Ahmad A, Pasricha R, Sastry M, Lovley DR, Stolz JF, et al. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13:1822. DOI: 10.1039/b303808b.Search in Google Scholar

[33] Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275:496-502. DOI: 10.1016/j.jcis.2004.03.003.Search in Google Scholar

[34] Selvakannan P, Sastry M, Mandal S, Roy D, Chaudhari RV, Sastry M, et al. Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chem Commun. 2005;16:1684. DOI: 10.1039/b418566h.Search in Google Scholar

[35] Vilchis-Nestor AR, Sánchez-Mendieta V, Camacho-López MA, Gómez-Espinosa RM, Camacho-López MA, Arenas-Alatorre JA. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Lett. 2008;62. DOI: 10.1016/j.matlet.2008.01.138.Search in Google Scholar

[36] Lincoln EP, Koopman B, Bagnall LO, Nordstedt RA. Aquatic system for fuel and feed production from livestock wastes. J Agric Eng Res. 1986;33:159-169. DOI: 10.1016/S0021-8634(86)80046-4.Search in Google Scholar

[37] Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, et al. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6:35-44.Search in Google Scholar

[38] Hutchison JE. Greener nanoscience: A proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano. 2008;2:395-402. DOI: 10.1021/nn800131j.Search in Google Scholar

[39] Mosaferi M, Nemati S, Khataee A, Nasseri S, Hashemi A, Ravenscroft P, et al. Removal of arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. J Environ Heal Sci Eng. 2014;12:74. DOI: 10.1186/2052-336X-12-74.Search in Google Scholar

[40] Reicha FM, Sarhan A, Abdel-Hamid MI, El-Sherbiny IM. Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydr Polym. 2012;89:236-244. DOI: 10.1016/j.carbpol.2012.03.002.Search in Google Scholar

[41] Long Y, Ran X, Zhang L, Guo Q, Yang T, Gao J, et al. A method for the preparation of silver nanoparticles using commercially available carboxymethyl chitosan and sunlight. Materials Lett. 2013;112:101-104. DOI: 10.1016/j.matlet.2013.09.035.Search in Google Scholar

[42] Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV. A novel one-pot “green” synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res. 2006;341:2012-8. DOI: 10.1016/j.carres.2006.04.042.Search in Google Scholar

[43] Yang J, Pan J. Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Mater. 2012;60:4753-4758. DOI: 10.1016/j.actamat.2012.05.037.Search in Google Scholar

[44] Zhang R, Edgar KJ. Properties, chemistry, and applications of the bioactive polysaccharide curdlan. Biomacromolecules. 2014;15:1079-1096. DOI: 10.1021/bm500038g.Search in Google Scholar

[45] Zhao X, Xia Y, Li Q, Ma X, Quan F, Geng C, et al. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surfaces A Physicochem Eng Asp. 2014;444:180-188. DOI: 10.1016/j.colsurfa.2013.12.008.Search in Google Scholar

[46] Bankura KP, Maity D, Mollick MMR, Mondal D, Bhowmick B, Bain MK, et al. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr Polym. 2012;89:1159-1165. DOI: 10.1016/j.carbpol.2012.03.089.Search in Google Scholar

[47] Chen J, Wang J, Zhang X, Jin Y. Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys. 2008;108:421-424. DOI: 10.1016/j.matchemphys.2007.10.019.Search in Google Scholar

[48] El-Rafie MH, El-Naggar ME, Ramadan MA, Fouda MMG, Al-Deyab SS, Hebeish A. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydr Polym. 2011;86:630-635. DOI: 10.1016/j.carbpol.2011.04.088.Search in Google Scholar

[49] Hebeish A, El-Rafie MH, El-Sheikh MA, El-Naggar ME. Nanostructural features of silver nanoparticles powder synthesized through concurrent formation of the nanosized particles of both starch and silver. J Nanotechnol. 2013:1-10. DOI: 10.1155/2013/201057.Search in Google Scholar

[50] Hebeish A, Farag S, Sharaf S, Shaheen TI. Nanosized carbamoylethylated cellulose as novel precursor for preparation of metal nanoparticles. Fibers Polym. 2015;16:276-284. DOI: 10.1007/s12221-015-0276-6.Search in Google Scholar

[51] Hebeish AA, El-Rafie MH, Abdel-Mohdy FA, Abdel-Halim ES, Emam HE. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym. 2010;82:933-941. DOI: 10.1016/j.carbpol.2010.06.020.Search in Google Scholar

[52] Kanmani P, Lim ST. Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydr Polym. 2013;97:421-428. DOI: 10.1016/j.carbpol.2013.04.048.Search in Google Scholar

[53] Johnson RL, Nurmi JT, O’Brien Johnson GS, Fan D, O’Brien Johnson RL, Shi Z, et al. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environ Sci Technol. 2013;47:1573-1580. DOI: 10.1021/es304564q.Search in Google Scholar

[54] El-Naggar ME, Shaheen TI, Fouda MMG, Hebeish AA. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles. Carbohydr Polym. 2016;136:1128-1136. DOI: 10.1016/j.carbpol.2015.10.003.Search in Google Scholar

[55] Wang B, Chen K, Jiang S, Reincke F, Tong W, Wang D et al. Chitosan-mediated synthesis of gold nanoparticles on patterned poly(dimethylsiloxane) surfaces. Biomacromolecules. 2006;7:1203-1209. DOI: 10.1021/BM060030F.Search in Google Scholar

[56] Wu C-C, Chen D-H. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst. Nanoscale Res Lett. 2012;7:317. DOI: 10.1186/1556-276X-7-317.Search in Google Scholar

[57] Venkatesham M, Ayodhya D, Madhusudhan A, Veerabhadram G. Synthesis of stable silver nanoparticles using gum acacia as reducing and stabilizing agent and study of its microbial properties: A novel green approach. Int J Green Nanotechnol. 2012;4:199-206. DOI: 10.1080/19430892.2012.705999.Search in Google Scholar

[58] Padil VVT, Černík M. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions. J Hazard Mater. 2015;287:102-110. DOI: 10.1016/j.jhazmat.2014.12.042.Search in Google Scholar

[59] Nadagouda MN, Polshettiwar V, Varma RS, Sun S, Murray CB, Weller D, et al. Self-assembly of palladium nanoparticles: synthesis of nanobelts, nanoplates and nanotrees using vitamin B1, and their application in carbon-carbon coupling reactions. J Mater Chem. 2009;19:2026. DOI: 10.1039/b817112b.Search in Google Scholar

[60] Nadagouda MN, Varma RS, Zou B, Ceyhan B, Simon U, Niemeyer CM, et al. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods. Green Chem. 2006;8:516. DOI: 10.1039/b601271j.Search in Google Scholar

[61] Nadagouda MN, Varma RS. A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst Growth Des. 2007;7:2582-7. DOI: 10.1021/cg070554e.Search in Google Scholar

[62] Nadagouda MN, Varma RS, Wang X, Li Y, Sun Y, Xia Y, et al. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008;10:859. DOI: 10.1039/b804703k.Search in Google Scholar

[63] Kou J, Varma RS. Beet juice - induced green fabrication of plasmonic AgCl/Ag nanoparticles. Chem Sus Chem. 2012;5:2435-2441. DOI: 10.1002/cssc.201200477.Search in Google Scholar

[64] Kou J, Varma RS, Guo S, Wang E, Sau TK, Rogach AL, et al. Beet juice utilization: Expeditious green synthesis of noble metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves. RSC Adv. 2012;2:10283. DOI: 10.1039/c2ra21908e.Search in Google Scholar

[65] Baruwati B, Varma RS. High value products from waste: grape pomace extract - a three-in-one package for the synthesis of metal nanoparticles. Chem Sus Chem. 2009;2:1041-1044.Search in Google Scholar

[66] Anderson DM, Wang WP. Composition of the gum from Combretum paniculatum and four other gums which are not permitted food additives. Phytochemistry. 1990;29:1193-1195.Search in Google Scholar

[67] Anderson DMW, Weiping W. Gum arabic (Acacia Senegal) from Uganda: Characteristic N.M.R. Spectra, amino acid compositions, and gum/soil cationic relationships. Int Tree Crop J. 1992;7:167-179. DOI: 10.1080/01435698.1992.9752915.Search in Google Scholar

[68] Anderson DMW, Mcnab CGA, Anderson CG, Brown PM, Pringuer MA. Studies of uronic acid materials, Part 58: Gum exudates from the Genus Sterculia (Gum Karaya). Int Tree Crop J. 1983;2:147-154. DOI: 10.1080/01435698.1983.9752749.Search in Google Scholar

[69] Anderson DMW, Bridgeman MME. The composition of the proteinaceous polysaccharides exuded by astragalus microcephalus, A. Gummifer and A. Kurdicus - The sources of Turkish gum tragacanth. Phytochemistry. 1985;24:2301-2304. DOI: 10.1016/S0031-9422(00)83031-9.Search in Google Scholar

[70] Anderson DMW, Howlett JF, McNab CGA. The amino acid composition of the proteinaceous component of gum arabic (Acacia Senegal (L.) Willd.). Food Addit Contam. 1985;2:159-164. DOI: 10.1080/02652038509373539.Search in Google Scholar

[71] Anderson DMW, Howlett JF, McNab CGA. The amino acid composition of the proteinaceous component of gum karaya (Sterculia spp.). Food Addit Contam. 1985;2:153-157. DOI: 10.1080/02652038509373538.Search in Google Scholar

[72] Anderson DMW, Yin XS. The amino acid composition and quantitative sugar-amino acid relationships in sequential Smith-degradation products from gum talha (Acacia seyal Del.). Food Addit Contam. 1988;5:1-8. DOI: 10.1080/02652038809373656.Search in Google Scholar

[73] Hall SR. Biotemplating. Imperial College Press; 2009. DOI: 10.1142/p646.Search in Google Scholar

[74] Phillips GO, Williams PA. Tree exudates gums: natural and versatile food additives and ingredients. Food Ingred Anal Internat. 2001;23:26-28.Search in Google Scholar

[75] Phillips GO, Williams PA. Handbook of Hydrocolloids. Cambridge: Woodhead Pub; 2009; 155-168.Search in Google Scholar

[76] Kennedy JF, Phillips GO, Williams PA, editors. Gum Arabic. Cambridge: Royal Society of Chemistry; 2011. DOI: 10.1039/9781849733106.Search in Google Scholar

[77] Williams PA, Phillips GO. Gum Arabic. Cambridge: Woodhead Publishers LTD Press; 2009; 252-273.Search in Google Scholar

[78] Verbeken D, Dierckx S, Dewettinck K. Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol. 2003;63:10-21. DOI: 10.1007/s00253-003-1354-z.Search in Google Scholar

[79] Vinod VTP, Sashidhar RB, Suresh KI, Rama Rao B, Vijaya Saradhi UVR, Prabhakar Rao T. Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food Hydrocoll. 2008;22:899-915. DOI: 10.1016/j.foodhyd.2007.05.006.Search in Google Scholar

[80] Vinod VTP, Sashidhar RB, Sarma VUM, Vijaya Saradhi UVR. Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): A tree gum from India. J Agric Food Chem. 2008;56:2199-207. DOI: 10.1021/jf072766p.Search in Google Scholar

[81] Anderson DMW, Dea ICM. Studies on uronic acid materials: Part XXX. Examination of three fractions obtained from acacia drepanolobium gum. Carbohydr Res. 1968;8:440-447. DOI: 10.1016/S0008-6215(00)81528-1.Search in Google Scholar

[82] Fauconnier ML, Blecker C, Groyne J, Razafindralambo H, Vanzeveren E, Marlier M, et al. Characterization of two Acacia gums and their fractions using a langmuir film balance. J Agric Food Chem. 2000;48:2709-2712.Search in Google Scholar

[83] Osman ME, Menzies AR, Williams PA, Phillips GO, Baldwin TC. The molecular characterisation of the polysaccharide gum from Acacia senegal. Carbohydr Res. 1993;246:303-318. DOI: 10.1016/0008-6215(93)84042-5.Search in Google Scholar

[84] Osman ME, Williams PA, Menzies AR, Phillips GO. Characterization of commercial samples of gum arabic. J Agric Food Chem. 1993;41:71-77. DOI: 10.1021/jf00025a016.Search in Google Scholar

[85] Osman ME, Menzies AR, Martin BA, Williams PA, Phillips GO, Baldwin TC. Characterization of gum arabic fractions obtained by anion-exchange chromatography. Phytochemistry. 1995;38:409-417. DOI: 10.1016/0031-9422(94)00645-A.Search in Google Scholar

[86] Randall RC, Phillips GO, Williams PA. Fractionation and characterization of gum from Acacia senegal. Food Hydrocoll. 1989;3:65-75. DOI: 10.1016/S0268-005X(89)80034-7.Search in Google Scholar

[87] Mahendran T, Williams PA, Phillips GO, Al-Assaf S, Baldwin TC. New insights into the structural characteristics of the arabinogalactan-protein (AGP) fraction of gum arabic. J Agric Food Chem. 2008;56:9269-9276. DOI: 10.1021/jf800849a.Search in Google Scholar

[88] Phillips GO, Williams PA. Handbook of Hydrocolloids. Woodhead Pub; 2009.Search in Google Scholar

[89] Padala SR, Williams PA, Phillips GO. Adsorption of gum arabic, egg white protein, and their mixtures at the oil-water interface in limonene oil-in-water emulsions. J Agric Food Chem. 2009;57:4964-4973. DOI: 10.1021/jf803794n.Search in Google Scholar

[90] Randall RC, Phillips GO, Williams PA. The role of the proteinaceous component on the emulsifying properties of gum arabic. Food Hydrocoll. 1988;2:131-140. DOI: 10.1016/S0268-005X(88)80011-0.Search in Google Scholar

[91] Anderson DMW, Grant DAD. The chemical characterization of some Astragalus gum exudates. Food Hydrocoll. 1988;2:417-423. DOI: 10.1016/S0268-005X(88)80006-7.Search in Google Scholar

[92] Phillips GO, Williams PA. Handbook of Hydrocolloids. CRC Press; 2000.Search in Google Scholar

[93] Verotta L, El-Sebakhy NA. Cycloartane and oleanane saponins from Astragalus sp. Stud Nat Prod Chem. 2001;25:179-234. DOI: 10.1016/S1572-5995(01)80008-9.Search in Google Scholar

[94] Singh B, Sharma V. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohydr Polym. 2014;101:928-940. DOI: 10.1016/j.carbpol.2013.10.022.Search in Google Scholar

[95] Stephen AM, Phillips GO, Williams PA, editors. Food Polysaccharides and their Applications. Boca Raton, London, New York: CRC Press. Taylor & Francis; 2006. https://ttngmai.files.wordpress.com/2012/10/foodpolysaccharidestheirapplications.pdfSearch in Google Scholar

[96] Anderson DMW, McNab CGA, Anderson CG, Brown PM, Pringuer MA. Studies of uronic acid materials. 58. Gum exudates from the genus Sterculia (gum karaya). Int Tree Crop J. 1983. DOI: 10.1080/01435698.1983.9752749Search in Google Scholar

[97] Le Cerf D, Irinei F, Muller G. Solution properties of gum exudates from Sterculia urens (Karaya gum). Carbohydr Polym. 1990;13:375-386. DOI: 10.1016/0144-8617(90)90037-S.Search in Google Scholar

[98] Brito ACF, Silva DA, de Paula RCM, Feitosa JPA. Sterculia striata exudate polysaccharide: characterisation, rheological properties and comparison with Sterculia urens (karaya) polysaccharide. Polym Inter. 2004;53:1025-1032. DOI: 10.1002/pi.1468Search in Google Scholar

[99] de Brito ACF, Sierakowski MR, Reicher F, Feitosa JPA, de Paula RCM. Dynamic rheological study of Sterculia striata and karaya polysaccharides in aqueous solution. Food Hydrocoll. 2005;19:861-867. DOI: 10.1016/j.foodhyd.2004.10.035.Search in Google Scholar

[100] Whistler RL, BeMiller JN. Industrial Gums: Polysaccharides and their Derivatives. Third Ed. San Diego: Academic Press; 1993.Search in Google Scholar

[101] Janaki B, Sashidhar R. Physico-chemical analysis of gum kondagogu (Cochlospermum gossypium): a potential food additive. Food Chem. 1998;61:231-236. DOI: 10.1016/S0308-8146(97)00089-7.Search in Google Scholar

[102] Idu M, Uzoekwe S, Onyibe HI. Nutritional evaluation of Sterculia setigera seeds and pod. Pakistan J Biol Sci. PJBS 2008;11:139-141.Search in Google Scholar

[103] Janaki B, Sashidhar RB. Subchronic (90-day) toxicity study in rats fed gum kondagogu (Cochlospermumgossypium). Food Chem Toxicol. 2000;38:523-534.Search in Google Scholar

[104] Vegi GMN, Sistla R, Srinivasan P, Beedu SR, Khar RK, Diwan P V. Emulsifying properties of gum kondagogu (Cochlospermum gossypium), a natural biopolymer. J Sci Food Agric. 2009;89:1271-1276. DOI: 10.1002/jsfa.3568.Search in Google Scholar

[105] Naidu VGM, Madhusudhana K, Sashidhar RB, Ramakrishna S, Khar RK, Ahmed FJ, et al. Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohydr Polym. 2009;76:464-471. DOI: 10.1016/j.carbpol.2008.11.010.Search in Google Scholar

[106] Vinod VTP, Sashidhar RB. Solution and conformational properties of gum kondagogu (Cochlospermum gossypium) - A natural product with immense potential as a food additive. Food Chem. 2009;116:686-692. DOI: 10.1016/j.foodchem.2009.03.009.Search in Google Scholar

[107] Vinod VTP, Sashidhar RB, Sarma VUM, Raju SS. Comparative amino acid and fatty acid compositions of edible gums kondagogu (Cochlospermum gossypium) and karaya (Sterculia urens). Food Chem. 2010;123:57-62. DOI: 10.1016/j.foodchem.2010.03.127.Search in Google Scholar

[108] Vinod VTP, Sashidhar RB, Sreedhar B. Biosorption of nickel and total chromium from aqueous solution by gum kondagogu (Cochlospermum gossypium): A carbohydrate biopolymer. J Hazard Mater. 2010;178:851-860. DOI: 10.1016/j.jhazmat.2010.02.016.Search in Google Scholar

[109] Vinod VTP, Sashidhar RB, Sreedhar B, Rama Rao B, Nageswara Rao T, Abraham JT. Interaction of Pb2+ and Cd2+ with gum kondagogu (Cochlospermum gossypium): A natural carbohydrate polymer with biosorbent properties. Carbohydr Polym. 2009;78:894-901. DOI: 10.1016/j.carbpol.2009.07.025.Search in Google Scholar

[110] Vinod V, Sashidhar R, Černík M. Morphology and metal binding characteristics of a natural polymer - kondagogu (Cochlospermum gossypium) gum. Molecules. 2013;18:8264-8274. DOI: 10.3390/molecules18078264.Search in Google Scholar

[111] Saravanan P, Vinod VTP, Sreedhar B, Sashidhar RB. Gum kondagogu modified magnetic nano-adsorbent: An efficient protocol for removal of various toxic metal ions. Mater Sci Eng C. 2012;32:581-586. DOI: 10.1016/j.msec.2011.12.015.Search in Google Scholar

[112] Vinod VTP, Sashidhar RB, Sukumar AA. Competitive adsorption of toxic heavy metal contaminants by gum kondagogu (Cochlospermum gossypium): A natural hydrocolloid. Colloids Surfaces B Biointerfaces. 2010;75:490-495. DOI: 10.1016/j.colsurfb.2009.09.023.Search in Google Scholar

[113] Davidson RL, editor. Handbook of Water-Soluble Gums and Resins. New York: McGraw-Hill; 1980. http://trove.nla.gov.au/version/10638860.Search in Google Scholar

[114] Panda H. The Complete Technology Book on Natural Products (Forest Based). Asia Pacific Business Press; 2002.Search in Google Scholar

[115] Kang J, Cui SW, Chen J, Phillips GO, Wu Y, Wang Q. New studies on gum ghatti (Anogeissus latifolia) part I. Fractionation, chemical and physical characterization of the gum. Food Hydrocoll. 2011;25:1984-1990. DOI: 10.1016/j.foodhyd.2010.12.011.Search in Google Scholar

[116] Kang J, Cui SW, Phillips GO, Chen J, Guo Q, Wang Q. New studies on gum ghatti (Anogeissus latifolia) Part III: Structure characterization of a globular polysaccharide fraction by 1D, 2D NMR spectroscopy and methylation analysis. Food Hydrocoll. 2011;25:1999-2007. DOI: 10.1016/j.foodhyd.2010.11.020.Search in Google Scholar

[117] Castellani O, Al-Assaf S, Axelos M, Phillips GO, Anton M. Hydrocolloids with emulsifying capacity. Part 2 - Adsorption properties at the n-hexadecane-water interface. Food Hydrocoll. 2010;24:121-130. DOI: 10.1016/j.foodhyd.2009.07.006.Search in Google Scholar

[118] Deshmukh AS, Setty CM, Badiger AM, Muralikrishna KS. Gum ghatti: A promising polysaccharide for pharmaceutical applications. Carbohydr Polym. 2012;87:980-986. DOI: 10.1016/j.carbpol.2011.08.099.Search in Google Scholar

[119] Mohan YM, Raju KM, Sambasivudu K, Singh S, Sreedhar B. Preparation of acacia-stabilized silver nanoparticles: A green approach. J Appl Polym Sci. 2007;106:3375-3381. DOI: 10.1002/app.26979.Search in Google Scholar

[120] Akele ML, Assefa AG, Alle M. Microwave-assisted green synthesis of silver nanoparticles by using gum acacia: Synthesis, characterization and catalytic activity studies. Int J Green Chem Bioprocess. 2015;5:21-27.Search in Google Scholar

[121] Dong C, Zhang X, Cai H, Cao C. Facile and one-step synthesis of monodisperse silver nanoparticles using gum acacia in aqueous solution. J Mol Liq. 2014;196:135-141. DOI: 10.1016/j.molliq.2014.03.009.Search in Google Scholar

[122] Djajadisastra JS, Purnamasari P, Pujiyanto A. Antioxidant activity of gold nanoparticles using gum arabic as a stabilizing agent. Int J Pharm Pharm Sci. 2014;6:462-465.Search in Google Scholar

[123] Thanaa I. Shalaby, Rasha S. Shams El-Dine SAAE-G. Green synthesis of gold nanoparticles using cumin seeds and gum arabic: Studying their photothermal efficiency. Nanosci Nanotechnol. 2015;5:89-96. DOI: 10.5923/j.nn.20150504.03.Search in Google Scholar

[124] Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: In vivo pharmacokinetics and X-ray-contrast-imaging studies. Small. 2007;3:333-341. DOI: 10.1002/smll.200600427.Search in Google Scholar

[125] Dong C, Cai H, Zhang X, Cao C. Synthesis and characterization of monodisperse copper nanoparticles using gum acacia. Phys E Low-Dimensional Syst Nanostruct. 2014;57:12-20. DOI: 10.1016/j.physe.2013.10.025.Search in Google Scholar

[126] Chockalingam A, Babu H, Chittor R, Tiwari J, Che Y, Li Y, et al. Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria. J Nanobiotechnol. 2010;8:30. DOI: 10.1186/1477-3155-8-30.Search in Google Scholar

[127] Venkatesham M, Ayodhya D, Madhusudhan A, Santoshi Kumari A, Veerabhadram G, Girija Mangatayaru K. A novel green synthesis of silver nanoparticles using gum karaya: Characterization, antimicrobial and catalytic activity studies. J Clust Sci. 2014;25:409-422. DOI: 10.1007/s10876-013-0620-1.Search in Google Scholar

[128] Vinod VTP, Nguyen NHA, Sevcu A, Černík M. Fabrication, characterization, and antibacterial properties of electrospun membrane composed of gum karaya, polyvinyl alcohol, and silver nanoparticles. J Nanomater. 2015. Article ID 750726. DOI: Org/10.1155/2015/750726.Search in Google Scholar

[129] Pooja D, Panyaram S, Kulhari H, Reddy B, Rachamalla SS, Sistla R. Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. Int J Biol Macromol. 2015;80:48-56. DOI: 10.1016/j.ijbiomac.2015.06.022.Search in Google Scholar

[130] Thekkae Padil VV, Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomed. 2013;8:889-898. DOI: 10.2147/IJN.S40599.Search in Google Scholar

[131] Vinod VTP, Saravanan P, Sreedhar B, Devi DK, Sashidhar RB. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surfaces B Biointerfaces. 2011;83:291-298. DOI: 10.1016/j.colsurfb.2010.11.035.Search in Google Scholar

[132] Kora AJ, Sashidhar RB, Arunachalam J. Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym. 2010;82:670-679. DOI: 10.1016/j.carbpol.2010.05.034.Search in Google Scholar

[133] Reddy GB, Madhusudhan A, Ramakrishna D, Ayodhya D, Venkatesham M, Veerabhadram G. Green chemistry approach for the synthesis of gold nanoparticles with gum kondagogu: characterization, catalytic and antibacterial activity. J Nanostructure Chem. 2015;5:185-193. DOI: 10.1007/s40097-015-0149-y.Search in Google Scholar

[134] Saravanan P, Vinod VTP, Sreedhar B, Sashidhar RB. Gum kondagogu modified magnetic nano-adsorbent: An efficient protocol for removal of various toxic metal ions. Mater Sci Eng C. 2012;32:581-586. DOI: 10.1016/j.msec.2011.12.015.Search in Google Scholar

[135] Kora AJ, Arunachalam J. Green fabrication of silver nanoparticles by gum tragacanth (Astragalus gummifer): A dual functional reductant and stabilizer. J Nanomater. 2012;2012:1-8. DOI: 10.1155/2012/869765.Search in Google Scholar

[136] Ghayempour S, Montazer M, Mahmoudi Rad M. Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: A low cytotoxic photocatalyst with antibacterial and antifungal properties. Carbohydr Polym. 2016;136:232-421. DOI: 10.1016/j.carbpol.2015.09.001.Search in Google Scholar

[137] Kora A, Beedu S, Jayaraman A. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org Med Chem Let. 2012;2:17. DOI: 10.1186/2191-2858-2-17.Search in Google Scholar

[138] Kora AJ, Rastogi L. Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arab J Chem. 2015. DOI: 10.1016/j.arabjc.2015.06.024.Search in Google Scholar

[139] Mittal H, Mishra SB. Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr Polym. 2014;101:1255-1264. DOI: 10.1016/j.carbpol.2013.09.045.Search in Google Scholar

[140] Lee KY, Jeong L, Kang YO, Lee SJ, Park WH. Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev. 2009;61:1020-1032. DOI: 10.1016/j.addr.2009.07.006.Search in Google Scholar

[141] Matsumoto H, Tanioka A. functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes (Basel). 2011;1:249-264. DOI: 10.3390/membranes1030249.Search in Google Scholar

[142] Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z. An Introduction to Electrospinning and Nanofibers. World Scientific; 2005. DOI: 10.1142/5894.Search in Google Scholar

[143] Coluzza I, Pisignano D, Gentili D, Pontrelli G, Succi S. Ultrathin fibers from electrospinning experiments under driven fast-oscillating perturbations. Phys Rev Appl. 2014;2:54011. DOI: 10.1103/PhysRevApplied.2.054011.Search in Google Scholar

[144] Yoon K, Hsiao BS, Chu B, Samet JM, Dominici F, Curriero FC, et al. Functional nanofibers for environmental applications. J Mater Chem. 2008;18:5326. DOI: 10.1039/b804128h.Search in Google Scholar

[145] Toskas G, Hund R-D, Laourine E, Cherif C, Smyrniotopoulos V, Roussis V. Nanofibers based on polysaccharides from the green seaweed Ulva Rigida. Carbohydr Polym. 2011;84:1093-1102. DOI: 10.1016/j.carbpol.2010.12.075.Search in Google Scholar

[146] Ranjbar-Mohammadi M, Bahrami SH, Joghataei MT. Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties. Mater Sci Eng C. 2013;33:4935-4943. DOI: 10.1016/j.msec.2013.08.016.Search in Google Scholar

[147] Lubambo AF, de Freitas RA, Sierakowski M-R, Lucyszyn N, Sassaki GL, Serafim BM, et al. Electrospinning of commercial guar-gum: Effects of purification and filtration. Carbohydr Polym. 2013;93:484-491. DOI: 10.1016/j.carbpol.2013.01.031.Search in Google Scholar

[148] Elsabee MZ, Naguib HF, Morsi RE. Chitosan based nanofibers, review. Mater Sci Eng C. 2012;32:1711-1726. DOI: 10.1016/j.msec.2012.05.009.Search in Google Scholar

[149] Homayoni H, Ravandi SAH, Valizadeh M. Electrospinning of chitosan nanofibers: Processing optimization. Carbohydr Polym. 2009;77:656-661. DOI: 10.1016/j.carbpol.2009.02.008.Search in Google Scholar

[150] Vashisth P, Pruthi PA, Singh RP, Pruthi V. Process optimization for fabrication of gellan based electrospun nanofibers. Carbohydr Polym. 2014;109:16-21. DOI: 10.1016/j.carbpol.2014.03.003.Search in Google Scholar

[151] Padil VVT, Stuchlík M, Černík M. Plasma modified nanofibres based on gum kondagogu and their use for collection of nanoparticulate silver, gold and platinum. Carbohydr Polym. 2015;121:468-476. DOI: 10.1016/j.carbpol.2014.11.074.Search in Google Scholar

[152] Padil VVT, Nguyen NHA, Rożek Z, Ševců A, Černík M. Synthesis, fabrication and antibacterial properties of a plasma modified electrospun membrane consisting of gum kondagogu, dodecenyl succinic anhydride and poly (vinyl alcohol). Surf Coatings Technol. 2015;271:32-38. DOI: 10.1016/j.surfcoat.2015.01.035.Search in Google Scholar

[153] Radhi Addai Z, Abdullah A, Abd Mutalib S, Hamid Musa K. Effect of gum arabic on quality and antioxidant properties of papaya fruit during cold storage. Int J Chem Tech Res. 2013;5:974-4290.Search in Google Scholar

[154] Padil VVT, Senan C, Wacławek S, Černík M. Electrospun fibers based on arabic, karaya and kondagogu gums. Int J Biol Macromol. 2016;91:299-309. DOI: 10.1016/j.ijbiomac.2016.05.064.Search in Google Scholar

[155] Padil VVT, Černík M. Tree gum based electrospun nanofibre membranes: process optimization, characterization and environmental application. Nanocon 2014 Proceedings. http://nanocon2014.tanger.cz/files/proceedings/20/reports/3178.pdf.Search in Google Scholar

[156] Chu P, Chen J, Wang L, Huang N. Plasma-surface modification of biomaterials. Mater Sci Eng R Reports. 2002;36:143-206. DOI: 10.1016/S0927-796X(02)00004-9.Search in Google Scholar

[157] Guo M, Ding B, Li X, Wang X, Yu J, Wang M. Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties. J Phys Chem C. 2010;114:916-921. DOI: 10.1021/jp909672r.Search in Google Scholar

[158] Daw R, Candan S, Beck AJ, Devlin AJ, Brook IM, MacNeil S, et al. Plasma copolymer surfaces of acrylic acid/1,7 octadiene: surface characterisation and the attachment of ROS 17/2.8 osteoblast-like cells. Biomaterials. 1998;19:1717-1725.Search in Google Scholar

[159] Svirachev DM, Tabaliov NA. Plasma Treatment of Polymer Surfaces in Different Gases. Adv. Technol. Based Wave Beam Gener. Plasmas. Dordrecht: Springer Netherlands; 1999; 475-476. DOI: 10.1007/978-94-017-0633-9_23.Search in Google Scholar

[160] Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res. 1998;41:422-430.Search in Google Scholar

[161] Tan SH, Nguyen N-T, Chua YC, Kang TG. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics. 2010;4:32204. DOI: 10.1063/1.3466882.Search in Google Scholar

[162] Junkar I, Vesel A, Cvelbar U, Mozetič M, Strnad S. Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymers. Vacuum. 2009;84:83-85. DOI: 10.1016/j.vacuum.2009.04.011.Search in Google Scholar

[163] Krupa A, Sobczyk AT, Jaworek A. Surface properties of plasma-modified poly(vinylidene fluoride) and poly(vinyl chloride) nanofibres. Fibres Text East Eur. 2014;2(104).Search in Google Scholar

[164] Hilal N, Khayet M, Wright CJ. Membrane Modification: Technology and Applications. Taylor & Francis; 2012.Search in Google Scholar

[165] Rangel EC, Bento WCA, Kayama ME, Schreiner WH, Cruz NC. Enhancement of polymer hydrophobicity by SF6 plasma treatment and argon plasma immersion ion implantation. Surf Interface Anal. 2003;35:179-183. DOI: 10.1002/sia.1518.Search in Google Scholar

[166] Jeong L, Yeo I-S, Kim HN, Yoon Y Il, Jang DH, Jung SY, et al. Plasma-treated silk fibroin nanofibers for skin regeneration. Int J Biol Macromol. 2009;44:222-228. DOI: 10.1016/j.ijbiomac.2008.12.008.Search in Google Scholar

[167] Nisoa M, Wanichapichart P. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films. Songklanakarin J Sci Technol. 2010;32:97-101.Search in Google Scholar

[168] Thongphud A, Paosawatyanyong B, Visal-athaphand P, Supaphol P. Improvement of hydrophobic properties of the electrospun PVA fabrics by SF6 plasma treatment. Adv Mater Res. 2008;55-57:625-8. DOI: 10.4028/www.scientific.net/AMR.55-57.625.Search in Google Scholar

[169] Vinod VTP, Sashidhar RB, Sivaprasad N, Sarma VUM, Satyanarayana N, Kumaresan R, et al. Bioremediation of mercury (II) from aqueous solution by gum karaya (Sterculia urens): A natural hydrocolloid. Desalination. 2011;272:270-277. DOI: 10.1016/j.desal.2011.01.027.Search in Google Scholar

[170] Vinod VTP, Sashidhar RB. Bioremediation of industrial toxic metals with gum kondagogu (Cochlospermum gossypium): A natural carbohydrate biopolymer. Indian J Biotech. 2011;10:113-120. http://nopr.niscair.res.in/bitstream/123456789/10959/1/IJBT%2010(1)%20113-120.pdf.Search in Google Scholar

[171] Masoumi A, Ghaemy M. Removal of metal ions from water using nanohydrogel tragacanth gum-g-polyamidoxime: Isotherm and kinetic study. Carbohydr Polym. 2014;108:206-215. DOI: 10.1016/j.carbpol.2014.02.083.Search in Google Scholar

[172] Sahraei R, Ghaemy M. Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity. Carbohydr Polym. 2017;157:823-833. DOI: 10.1016/j.carbpol.2016.10.059.Search in Google Scholar

[173] Fosso-Kankeu E, Mittal H, Waanders F, Ntwampe IO, Ray SS. Preparation and characterization of gum karaya hydrogel nanocomposite flocculant for metal ions removal from mine effluents. Int J Environ Sci Technol. 2016;13:711-724. DOI: 10.1007/s13762-015-0915-x.Search in Google Scholar

[174] Banerjee SS, Chen D-H. Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J Hazard Mater. 2007;147:792-799. DOI: 10.1016/j.jhazmat.2007.01.079.Search in Google Scholar

[175] Sashidhar RB, Selvi SK, Vinod VTP, Kosuri T, Raju D, Karuna R. Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium(VI) from aqueous solution and synthetic nuclear power reactor effluents. J Environ Radioact. 2015;148:33-41. DOI: 10.1016/j.jenvrad.2015.05.016.Search in Google Scholar

[176] Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA. Nanotoxicology. Occup Environ Med. 2004;61:727-728. DOI: 10.1136/oem.2004.013243.Search in Google Scholar

[177] Padil VVT, Senan C, Černík M. Dodecenylsuccinic anhydride derivatives of gum karaya (Sterculia urens): Preparation, characterization, and their antibacterial properties. J Agric Food Chem. 2015;63:3757-3765. DOI: 10.1021/jf505783e.Search in Google Scholar

Plan your remote conference with Sciendo