Open Access

Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions


Cite

[1] Hollis GE. Water yield chances after the urbanization of the canon's brook catchment, Harlow, England. (Changements de l'apport d'eau à la suite de l'urbanisation du bassin versant de ‘Canon's Brook’à Harlow, en Angleterre). Hydrol Sci J. 1977;22(1):61-75. DOI: 10.1080/02626667709491694.10.1080/02626667709491694Search in Google Scholar

[2] Jennings DB, Jarnagin ST. Changes in anthropogenic impervious surfaces, precipitation and daily streamflow discharge: a historical perspective in a mid-Atlantic subwatershed. Landscape Ecol. 2002;17(5):471-489. DOI: 10.1023/A:1021211114125.10.1023/A:1021211114125Search in Google Scholar

[3] Moore WL, Morgan CW. Effects of watershed changes on streamflow. Water Resources Symposium (No. 2 Austin [etc]). Austin: Univ. of Texas; 1969.Search in Google Scholar

[4] Leopold LB. Hydrology for urban land planning: A guidebook on the hydrologic effects of urban land use. Pennsylvania: US Government Printing Office; 1968. http://pubs.er.usgs.gov/publication/cir554.10.3133/cir554Search in Google Scholar

[5] Makepeace DK, Smith DW, Stanley SJ. Urban stormwater quality: summary of contaminant data. Crit Rev Environ Sci Technol. 1995;25(2):93-139. DOI: 10.1080/10643389509388476.10.1080/10643389509388476Search in Google Scholar

[6] US EPA. Results of the nationwide urban runoff program. 28 selected towns of USA: United States Environmental Protection Agency; 1983. NTIS PB84-185552. http://www.epa.gov/npdes/pubs/sw_nurp_vol_1_finalreport.pdf.Search in Google Scholar

[7] US EPA. Low impact development (LID), a literature review. Florida and Washington DC: United States Environmental Protection Agency, 2000; EPA-841-B-00-005. http://water.epa.gov/polwaste/green/upload/lid.pdf.Search in Google Scholar

[8] Coffman LS. Low-impact Development: An Alternative Stormwater Management Technology. Handbook of Water Sensitive Planning and Design. Maryland: France RL; 2002:97-123.10.1201/9781420032420.ch1.5Search in Google Scholar

[9] Moglen GE, Gabriel SA, Faria JA. A framework for quantitative smart growth in land development. J Am Water Resour Assoc. 2003;39(4):947-959. https://scholar.vt.edu/access/content/group/359be9a6-39e4-43fdb090-cce1d3d2ded8/papers/JAWRA-SmartGrowth-modified.pdf.10.1111/j.1752-1688.2003.tb04418.xSearch in Google Scholar

[10] Low-impact development design strategies: an integrated design approach. Maryland: Department of Environmental Resources, Programs and Planning Division, Prince George’s County; 1999. http://water.epa.gov/polwaste/green/upload/lidnatl.pdf.Search in Google Scholar

[11] Booth DB, Jackson CR. Urbanization of aquatic systems: degradation thresholds, stormwater detection, and the limits of mitigation. J Am Water Resour Assoc. 1997;33(5):1077-1090. http://faculty.washington.edu/dbooth/Booth_and_Jackson_1997.pdf.10.1111/j.1752-1688.1997.tb04126.xSearch in Google Scholar

[12] Hunt WF, Lord WG. Urban Waterways: Bioretention performance, design, construction, and maintenance. North Carolina Cooperative Extension Service. AGW-588-05, 2006. http://www.bae.ncsu.edu/stormwater/PublicationFiles/Bioretention2006.pdf.Search in Google Scholar

[13] Davis AP. Field performance of bioretention: Hydrology impacts. J Hydrol Eng. 2008;13(2):90-95. DOI: 10.1061/(ASCE)1084-0699(2008)13:2(90).10.1061/(ASCE)1084-0699(2008)13:2(90)Search in Google Scholar

[14] Fassman EA, Blackbourn S. J Hydrol Eng. 2010. DOI: 10.1061/(ASCE)HE.1943-5584.0000238.10.1061/(ASCE)HE.1943-5584.0000238Search in Google Scholar

[15] Gregoire BG, Clausen JC. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol Eng. 2011;37(6):963-969. DOI:10.1016/j.ecoleng.2011.02.004.10.1016/j.ecoleng.2011.02.004Search in Google Scholar

[16] Ahiablame LM., Engel BA, Chaubey I. Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Pollut. 2012;223(7):4253-4273. DOI: 10.1007/s11270-012-1189-2.10.1007/s11270-012-1189-2Search in Google Scholar

[17] McNett JK, Hunt WF, Davis AP. J Environ Eng. 2011;137(9):790-799. DOI: 10.1061/(ASCE)EE.1943-7870.0000373.10.1061/(ASCE)EE.1943-7870.0000373Search in Google Scholar

[18] HUD (U.S. Department of Housing and Urban Development). The practice of low impact development. Office of Policy Development and Research. Washington, D.C. 2003, Report prepared by NAHB Research Center, Inc. Contract No. H-21314CA.Search in Google Scholar

[19] Davis AP. Green engineering principles promote low-impact development. Environ Sci Technol. 2005;39(16):338A-344A. DOI: 10.1021/es053327e.10.1021/es053327eSearch in Google Scholar

[20] DOD (Department of Defense). The low impact development manual, 2004: UFC-3-210-10. http://www.lowimpactdevelopment.org/lid%20articles/ufc_3_210_10.pdf.Search in Google Scholar

[21] Hunt WF, Traver RG, Davis AP, Emerson CH, Collins KA, Stagge JH, et al. Low impact development practices: designing to infiltrate in urban environments. Effects of urbanization on groundwater: an engineering case-based approach for sustainable development, 2010:308-343. DOI: 10.1061/9780784410783.ch12.10.1061/9780784410783.ch12Search in Google Scholar

[22] Hunt WF, Szpir LL. Urban waterways, permeable pavements, green roofs and cisterns, stormwater treatment practices for low-impact development. NC State University and NC A&T University Cooperative Extension, 2006. http://www.bae.ncsu.edu/stormwater/PublicationFiles/BMPs4LID.pdf.Search in Google Scholar

[23] Ahiablame LM, Engel BA, Chaubey I. Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Pollut. 2012;223(7):4253-4273. DOI: 10.1007/s11270-012-1189-2.10.1007/s11270-012-1189-2Search in Google Scholar

[24] Davis AP, Hunt WF, Traver RG, Clar, M. Bioretention technology: Overview of current practice and future needs. J Environ Eng. 2009;135(3):109-117. DOI: 10.1061/(ASCE)0733-9372(2009)135:3(109).10.1061/(ASCE)0733-9372(2009)135:3(109)Search in Google Scholar

[25] CEI (Comprehensive Environmental Inc.). City of Nashua, New Hampshire alternative stormwater management methods planning and guidance. Final Report, Part 1, March 2003. http://www.pennichuck.com/report/Nashua-Stormwater-Mgmt-Methods.pdf.Search in Google Scholar

[26] Reese AJ. Volume-based hydrology. Stormwater. 2009;10(6):54-67. https://smartech.gatech.edu/bitstream/handle/1853/46236/5.6.5_Lemoine_158.pdf.Search in Google Scholar

[27] Debo TN, Reese A. Municipal Stormwater Management. CRC Press; 2002. https://www.crcpress.com/Municipal-Stormwater-Management-Second-Edition/Debo-Reese/9781566705844.10.1201/9781420032260Search in Google Scholar

[28] Zimmer CA, Heathcote IW, Whiteley HR, Schroter H. Low-impact-development practices for stormwater: implications for urban hydrology. Canadian Water Res J. 2007;32(3):193-212. DOI: 10.4296/cwrj3203193.10.4296/cwrj3203193Search in Google Scholar

[29] Lloyd S. Water sensitive urban design in the Australian context, 2001. http://www.lsln.net.au/jspui/handle/1/11522.Search in Google Scholar

[30] Scholz, M, Grabowiecki P. Review of permeable pavement systems. Build Environ. 2007;42(11):3830-3836. DOI: 10.1016/j.buildenv.2006.11.016.10.1016/j.buildenv.2006.11.016Search in Google Scholar

[31] Pezzaniti D, Beecham S, Kandasamy J. Influence of clogging on the effective life of permeable pavements. Proc ICE-Water Manage. 2009;162(3):211-220. DOI: 10.168/WAMA.2009.00034.10.1680/wama.2009.00034Search in Google Scholar

[32] USEPA (US Environmental Protection Agency). Stormwater technology fact sheet. Bioretention. Washington, DC: Office of Water; 1999. EPA 832-F-99-012.Search in Google Scholar

[33] Bioretention manual. Maryland: Department of Environmental Resources, Prince George’s County; 2007. http://www.aacounty.org/DPW/Highways/Resources/Raingarden/RG_Bioretention_PG%20CO.pdf.Search in Google Scholar

[34] Design manual for use of bioretention in stormwater management. County PGC; 1993. http://water.epa.gov/polwaste/npdes/swbmp/Bioretention-Rain-Gardens.cfm.Search in Google Scholar

[35] Dietz ME. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007;186(1-4):351-363. DOI: 10.1007/s11270-007-9484-z.10.1007/s11270-007-9484-zSearch in Google Scholar

[36] Line DE, Hunt WF. Performance of a bioretention area and a level spreader-grass filter strip at two highway sites in North Carolina. J Irrig Drain Eng Div Am Soc Civ Eng. 2009;135(2):217-224. DOI: 10.1061/(ASCE)0733-9437(2009)135:2(217).10.1061/(ASCE)0733-9437(2009)135:2(217)Search in Google Scholar

[37] Roy-Poirier A, Champagne P, Filion Y. Review of bioretention system research and design: Past, present, and future. J Environ Eng. 2010;136(9):878-889. DOI: 10.1061/(ASCE)EE.1943-7870.0000227.10.1061/(ASCE)EE.1943-7870.0000227Search in Google Scholar

[38] Chapman C, Horner RR. Performance assessment of a street-drainage bioretention system. Water Environ Res. 2010;82(2):109-119. DOI: 10.2175/106143009X426112.10.2175/106143009X426112Search in Google Scholar

[39] DeBusk KM, Wynn TM. Storm-water bioretention for runoff quality and quantity mitigation. J Environ Eng. 2011;137(9):800-808. DOI: 10.1061/(ASCE)EE.1943-7870.0000388.10.1061/(ASCE)EE.1943-7870.0000388Search in Google Scholar

[40] Ahiablame LM, Engel BA, Chaubey I. Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Pollut. 2012;223(7):4253-4273. DOI:10.1007/s11270-012-1189-2.10.1007/s11270-012-1189-2Search in Google Scholar

[41] Hunt WF, Smith JT, Jadlocki SJ, Hathaway JM, Eubanks PR. Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. J Environ Eng. 2008. DOI: 10.1061/(ASCE)0733-9372(2008)134:5(403).10.1061/(ASCE)0733-9372(2008)134:5(403)Search in Google Scholar

[42] Davis AP, Shokouhian M, Sharma H, Minami C. Water quality improvement through bioretention media: Nitrogen and phosphorus removal. Water Environ Res. 2006:284-293. DOI: 10.2175/106143005X94376.10.2175/106143005X94376Search in Google Scholar

[42] Hunt WF, Jarrett AR, Smith JT, Sharkey LJ. Evaluating bioretention hydrology and nutrient removal at three field sites in North Carolina. J Irrig Drain Eng. 2006. DOI: 10.1061/(ASCE)0733-9437(2006)132:6(600).10.1061/(ASCE)0733-9437(2006)132:6(600)Search in Google Scholar

[44] Luell SK, Hunt WF, Winston RJ. Evaluation of undersized bioretention stormwater control measures for treatment of highway bridge deck runoff. Water Sci Technol. 2011;64(4):974-979. http://www.ncbi.nlm.nih.gov/pubmed/22097087.10.2166/wst.2011.73622097087Search in Google Scholar

[45] Kim H, Seagren EA, Davis AP. Engineered bioretention for removal of nitrate from stormwater runoff. Water Environ Res. 2003:355-367. http://www.jstor.org/stable/25045707.10.2175/106143003X141169Search in Google Scholar

[46] Dietz ME, Clausen JC. Saturation to improve pollutant retention in a rain garden. Environ Sci Technol. 2006;40(4):1335-1340. DOI: 10.1021/es051644f.10.1021/es051644fSearch in Google Scholar

[47] Ergas SJ, Sengupta S, Siegel R, Pandit A, Yao Y, Yuan X, et al. Performance of nitrogen-removing bioretention systems for control of agricultural runoff. J Environ Eng. 2010;136(10):1105-1112. DOI: 10.1061/(ASCE)EE.1943-7870.0000243.10.1061/(ASCE)EE.1943-7870.0000243Search in Google Scholar

[48] Davis AP, Shokouhian M, Sharma H, Minami C, Winogradoff D. Water quality improvement through bioretention: Lead, copper, and zinc removal. Water Environ Res. 2003:73-82. http://www.jstor.org/stable/25045664.10.2175/106143003X140854Search in Google Scholar

[49] Sun X, Davis AP. Heavy metal fates in laboratory bioretention systems. Chemosphere. 2007;66(9):1601-1609. DOI: 10.1016/j.chemosphere.2006.08.013.10.1016/j.chemosphere.2006.08.013Search in Google Scholar

[50] Zhang W, Brown GO, Storm DE. Enhancement of heavy metals retention in sandy soil by amendment with fly ash. Trans ASABE. 2008;51(4):1247-1254. http://cat.inist.fr/?aModele=afficheN&cpsidt=20763846.10.13031/2013.25241Search in Google Scholar

[51] Zhang L Seagren EA, Davis AP, Karns JS. The capture and destruction of Escherichia coli from simulated urban runoff using conventional bioretention media and iron oxide-coated sand. Water Environ Res. 2010;82(8):701-714. DOI: 10.2175/106143010X12609736966441.10.2175/106143010X12609736966441Search in Google Scholar

[52] Zhang L, Seagren EA, Davis AP, Karns JS. Long-term sustainability of Escherichia coli removal in conventional bioretention media. J Environ Eng. 2011;137(8):669-677. DOI: 10.1061/(ASCE)EE.1943-7870.0000365.10.1061/(ASCE)EE.1943-7870.0000365Search in Google Scholar

[53] Hathaway AM, Hunt WF, Wright JD, Jadlocki SJ. Field evaluation of indicator bacteria removal by stormwater BMPs in North Carolina. In World Environmental and Water Resources Congress 2009@sGreat Rivers, ASCE, 2009. 1123-1132. DOI: 10.1061/41036(342)112.10.1061/41036(342)112Search in Google Scholar

[54] Brown RA, William III FH. Impacts of construction activity on bioretention performance. J Hydr Eng. 2009;15(6):386-394. DOI: 10.1061/(ASCE)HE.1943-5584.0000165.10.1061/(ASCE)HE.1943-5584.0000165Search in Google Scholar

[55] Trowsdale SA, Simcock R. Urban stormwater treatment using bioretention. J Hydr. 2011;397(3):167-174. DOI: 10.1016/j.jhydrol.2010.11.023.10.1016/j.jhydrol.2010.11.023Search in Google Scholar

[56] Brown RA, Hunt WF. Water Sci Technol. 2012;65(2):361-367. DOI: 10.2166/wst.2012.860.10.2166/wst.2012.860Search in Google Scholar

[57] Davis AP, Shokouhian M, Sharma H, Minami C. Water Environ Res. 2001:5-14. http://www.jstor.org/stable/25045454.10.2175/106143001X138624Search in Google Scholar

[58] Hsieh CH, Davis AP. Evaluation and optimization of bioretention media for treatment of urban storm water runoff. J Environ Eng. 2005;131(11):1521-1531. DOI: 10.1061/(ASCE)0733-9372(2005)131:11(1521).10.1061/(ASCE)0733-9372(2005)131:11(1521)Search in Google Scholar

[59] Glass C, Bissouma S. Evaluation of a parking lot bioretention cell for removal of stormwater pollutants. Trans Ecol Environ. 2005:699-708. http://cat.inist.fr/?aModele=afficheN&cpsidt=17626010.Search in Google Scholar

[60] Hong E, Seagren EA, Davis AP. Sustainable oil and grease removal from synthetic stormwater runoff using bench-scale bioretention studies. Water Environ Res. 2006:141-155. DOI: 10.2175/106143005X89607.10.2175/106143005X89607Search in Google Scholar

[61] Roseen R, Ballestero T, Houle J, Avelleneda P, Wildey R, Briggs J, et al. Storm water low-impact development, conventional structural, and manufactured treatment strategies for parking lot runoff: Performance evaluations under varied mass loading conditions. Transp Res Rec. 2006:135-147. DOI: 10.3141/1984-15.10.1177/0361198106198400113Search in Google Scholar

[62] Davis AP. Field performance of bioretention. Water quality. Environ Eng Sci. 2007;24(8):1048-1064. DOI: 10.1089/ees.2006.0190.10.1089/ees.2006.0190Search in Google Scholar

[63] Rusciano GM, Obropta CC. Bioretention column study: Fecal coliform and total suspended solids reductions. Trans ASABE. 2007;50(4):1261-1269. http://www.water.rutgers.edu/Rain_Gardens/RGWebsite/misc/ColumnStudy.pdf.10.13031/2013.23636Search in Google Scholar

[64] USEPA (US Environmental Protection Agency). Stormwater technology fact sheet. Vegetated swales. Washington, DC: Office of Water; 1999. EPA 832-F-99-006. http://www.in.gov/idem/files/apph-ref.pdf.Search in Google Scholar

[65] Kirby JT, Durrans SR, Pitt R, Johnson PD. Hydraulic resistance in grass swales designed for small flow conveyance. J Hydraul Eng. 2005;131(1):65-68. DOI: 10.1061/(ASCE)0733-9429(2005)131:1(65).10.1061/(ASCE)0733-9429(2005)131:1(65)Search in Google Scholar

[66] Barrett ME, Walsh PM, Joseph F. Malina Jr, Charbeneau RJ. Performance of vegetative controls for treating highway runoff. J Environ Eng. 1998;124(11):1121-1128. DOI: 10.1061/(ASCE)0733-9372(1998)124:11(1121).10.1061/(ASCE)0733-9372(1998)124:11(1121)Search in Google Scholar

[67] Fach S, Engelhard C, Wittke N, Rauch W. Performance of infiltration swales with regard to operation in winter times in an Alpine region. Water Sci Technol. 2011;63(1):2658. DOI: 10.2166/wst.2011.153.10.2166/wst.2011.15322049762Search in Google Scholar

[68] Backstrom M. Sediment transport in grassed swales during simulated runoff events. Water Sci Technol. 2002;45(7):41-49. www.ncbi.nlm.nih.gov/pubmed/11989891.10.2166/wst.2002.0115Search in Google Scholar

[69] Backstrom M. Grassed swales for stormwater pollution control during rain and snowmelt. Water Sci Technol. 2003;48(9):123-134. http://wst.iwaponline.com/content/48/9/123.10.2166/wst.2003.0508Search in Google Scholar

[70] Miller C. Vegetated Roof Covers, A New Method for Controlling Runoff in Urbanized Areas. Proceedings from the 1998 Pennsylvania Stormwater Management Symposium. Villanova University; 1998.Search in Google Scholar

[71] GRRP (Green Roof Research Program). The Green roof research program at Michigan State University, 2010 [online]. http://www.hrt.msu.edu/greenroof/#Green%20Roof%20.Search in Google Scholar

[72] Bianchini F, Hewage K. How “green” are the green roofs? Lifecycle analysis of green roof materials. Build Environ 2012;48:57-65. DOI: 10.1016/j.buildenv.2011.08.019.10.1016/j.buildenv.2011.08.019Search in Google Scholar

[73] Ahiablame LM, Engel BA, Chaubey I. Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Pollut. 2012;223(7):4253-4273. DOI: 10.1007/s11270-012-1189-2.10.1007/s11270-012-1189-2Search in Google Scholar

[74] Rowe DB. Green roofs as a means of pollution abatement. Environ Pollut. 2011;159(8):2100-2110. DOI: 10.1016/j.envpol.2010.10.029.10.1016/j.envpol.2010.10.02921074914Search in Google Scholar

[75] Alsup S, Ebbs S, Retzlaff W. The exchangeability and leachability of metals from select green roof growth substrates. Urban Ecosystems. 2010;13(1):91-111. DOI: 10.1007/s11252-009-0106-y.10.1007/s11252-009-0106-ySearch in Google Scholar

[76] Berndtsson JC, Emilsson T, Bengtsson L. The influence of extensive vegetated roofs on runoff water quality. Sci Total Environ. 2006;355(1):48-63. DOI: 10.1016/j.scitotenv.2005.02.035.10.1016/j.scitotenv.2005.02.03516442432Search in Google Scholar

[77] Hathaway AM, Hunt WF, Jennings GD. A field study of green roof hydrologic and water quality performance. Trans ASABE5. 2008;1(1):37-44. http://www.bae.ncsu.edu/people/faculty/jennings/Publications/ASABE%20Hathaway%20Hunt%20Jennings.pdf.10.13031/2013.24225Search in Google Scholar

[78] Vijayaraghavan K., Joshi UM, Balasubramanian R. A field study to evaluate runoff quality from green roofs. Water Res. 2012;46(4):1337-1345. DOI: 10.1016/j.watres.2011.12.050.10.1016/j.watres.2011.12.05022244273Search in Google Scholar

[79] Zobrist J, Müller SR, Ammann A, Bucheli TD, Mottier V, Ochs M, et al. Quality of roof runoff for groundwater infiltration. Water Res. 2000;34(5):1455-1462. DOI: 10.1016/S0043-1354(99)00290-0.10.1016/S0043-1354(99)00290-0Search in Google Scholar

[80] USEPA S. Stormwater Technology Fact Sheet: Porous Pavement, 1999.Search in Google Scholar

[81] Collins KA, Hunt WF, Hathaway JM. Hydrologic comparison of four types of permeable pavement and standard asphalt in eastern North Carolina. J Hydrol Eng. 2008. DOI: 10.1061/(ASCE)1084-0699(2008)13:12(1146).10.1061/(ASCE)1084-0699(2008)13:12(1146)Search in Google Scholar

[82] Collins KA, Hunt WF, Hathaway JM. Side-by-side comparison of nitrogen species removal for four types of permeable pavement and standard asphalt in eastern North Carolina. J Hydrol Eng. 2009;15(6):512-521. DOI: 10.1061/(ASCE)HE.1943-5584.0000139.10.1061/(ASCE)HE.1943-5584.0000139Search in Google Scholar

[83] Hunt WF, Stephens S, Mayes D. Permeable pavement effectiveness in eastern North Carolina. Proceedings of 9th International Conference on Urban Drainage. Portland: ASCE; 2002.Search in Google Scholar

[84] Bean EZ, Hunt WF, Bidelspach DA. Field survey of permeable pavement surface infiltration rates. J Irrig Drain Eng. 2007. DOI: 10.1061/(ASCE)0733-9437(2007)133:3(249).10.1061/(ASCE)0733-9437(2007)133:3(249)Search in Google Scholar

[85] Brattebo BO, Booth DB. Water Res. 2003;37(18):4369-4376. DOI: 10.1016/S0043-1354(03)00410-X.10.1016/S0043-1354(03)00410-XSearch in Google Scholar

[86] Dreelin EA, Fowler L, Carroll CR. A test of porous pavement effectiveness on clay soils during natural storm events. Water Res. 2006;40(4):799-805. DOI: 10.1016/j.watres.2005.12.002.10.1016/j.watres.2005.12.002Search in Google Scholar

[87] James W, Shahin R. A laboratory examination of pollutants leached from four different pavements by acid rain. Advances in Modeling the Management of Stormwater Impacts. 1998;6(17):321.10.14796/JWMM.R200-17Search in Google Scholar

[88] Fach S, Geiger WF. Effective pollutant retention capacity of permeable pavements for infiltrated road runoffs determined by laboratory tests. Water Sci Technol. 2005;51(2):37-45. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.9249&rep=rep1&type=pdf.10.2166/wst.2005.0030Search in Google Scholar

[89] Myers B, Beecham S, van Leeuwen JA. Water quality with storage in permeable pavement basecourse. Proceedings of the ICE-Water Management. 2011;164(7):361-372. DOI: 10.1680/wama.2011.164.7.361.10.1680/wama.2011.164.7.361Search in Google Scholar

[90] Dierkes C, Kuhlmann L, Kandasamy J, Angelis G. Pollution retention capability and maintenance of permeable pavements. Proc. 9th International Conference on Urban Drainage, Global Solutions for Urban Drainage, 2002. DOI: 10.1061/40644(2002)40.10.1061/40644(2002)40Search in Google Scholar

[91] Dierkes C, Holte A, Geiger WF. Heavy metal retention within a porous pavement structure. Proc. the Eighth International Conference on Urban Storm Drainage. 1999. http://extension.oregonstate.edu/stormwater/sites/default/files/heavy_metal_retention_with_pervious_pavement.pdf.Search in Google Scholar

[92] Newman AP, Pratt CJ, Coupe SJ, Cresswell N. Oil bio-degradation in permeable pavements by microbial communities. Innovative Technologies in Urban Drainage. 2002;45(2):51-56. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.8488&rep=rep1&type=pdf.10.2166/wst.2002.0116Search in Google Scholar

[93] Legret M, Colandini V. Effects of a porous pavement with reservoir structure on runoff water: water quality and fate of heavy metals. Water Sci Technol. 1999;39(2):111-117. DOI: 10.1016/S0273-1223(99)00014-1.10.1016/S0273-1223(99)00014-1Search in Google Scholar

[94] Pagotto C, Legret M, Le Cloirec P. Comparison of the hydraulic behaviour and the quality of highway runoff water according to the type of pavement. Water Res. 2000;34(18):4446-4454. DOI: 10.1016/S0043-1354(00)00221-9.10.1016/S0043-1354(00)00221-9Search in Google Scholar

[95] Rushton BT. Low-impact parking lot design reduces runoff and pollutant loads. J Water Res Planning and Management. 2001;127(3):172-179. DOI: 10.1061/(ASCE)0733-9496(2001)127:3(172).10.1061/(ASCE)0733-9496(2001)127:3(172)Search in Google Scholar

[96] Tota-Maharaj K, Scholz M. Efficiency of permeable pavement systems for the removal of urban runoff pollutants under varying environmental conditions. Environ Progress Sustainable Energy. 2010;29(3):358-369. DOI: 10.1002/ep.10418.10.1002/ep.10418Search in Google Scholar

[97] Booth DB, Leavitt J. Field evaluation of permeable pavement systems for improved stormwater management. J Am Planning Assoc. 1999;65(3):314-325. DOI: 10.1080/01944369908976060.10.1080/01944369908976060Search in Google Scholar

[98] Fitts G. The new and improved open graded friction course mixes. Asphalt. 2002;17(2). http://worldcat.org/oclc/1514484.Search in Google Scholar

[99] Ferguson BK. Porous Pavements. Florida: CRC Press; 2005. https://www.crcpress.com/Porous-Pavements/Ferguson/9780849326707.10.1201/9781420038439.ch4Search in Google Scholar

[100] Stenmark C. An alternative road construction for stormwater management in cold climates. Water Sci Technol. 1995;32(1):79-84. DOI: 10.1016/0273-1223(95)00541-T.10.1016/0273-1223(95)00541-TSearch in Google Scholar

[101] Toronto and Region Conservation. Performance evaluation of permeable pavement and a bioretention swale. Seneca College, King City, Ontario. Toronto and Region Conservation Authority, 2006: Interim Report #2. https://wiki.umn.edu/pub/AARCapstone/BestManagementPractices/StormwaterManagement2.pdf.Search in Google Scholar

[102] Traver RG, Welker AL, Horst M, Vanacore M, Braga A, Kob L, et al. Lessons in porous concrete. Stormwater. 20005; July/August: 30-45.Search in Google Scholar

[103] Kwiatkowski M, Welker AL, Traver RG, Vanacore M, Ladd T. Evaluation of an infiltration best management practice utilizing pervious concrete. J Am Water Resour Assoc. 2007:1208-1222. DOI: 10.1111/j.1752-1688.2007.00104.x.10.1111/j.1752-1688.2007.00104.xSearch in Google Scholar

[104] Balades JD, Legret M, Madiec H. Permeable pavements: Pollution management tools. Water Sci Technol. 1995;32(1):49-56. DOI: 10.1016/0273-1223(95)00537-W.10.1016/0273-1223(95)00537-WSearch in Google Scholar

[105] Bioretention manual. Landover, MD: Prince George’s County (MD) Government, Department of Environmental Protection. Watershed Protection Branch; 2002.Search in Google Scholar

[106] Widomski MK, Sobczuk H, Olszta W. Sand-filled drainage ditches for erosion control: Effects on infiltration efficiency. Soil Sci Soc Am J. 2010;74(1):213-220. DOI: 10.2136/sssaj2009.0003.10.2136/sssaj2009.0003Search in Google Scholar

[107] Abu-Zreig M, Tamimi A. Field evaluation of sand-ditch water harvesting technique in Jordan. Agricult Water Manage. 2011;98(8):1291-1296. DOI: 10.1016/j.agwat.2011.03.008.10.1016/j.agwat.2011.03.008Search in Google Scholar

[108] Makepeace DK, Smith DW, Stanley SJ. Urban stormwater quality: summary of contaminant data. Crit Rev in Environ Sci Technol. 1995; 25(2):93-139. DOI: 10.1080/10643389509388476.10.1080/10643389509388476Search in Google Scholar

[109] Pitt R, Clark S, Field R. Groundwater contamination potential from stormwater infiltration practices. Urban Water. 1999;1(3):217-236. DOI: 10.1016/S1462-0758(99)00014-X.10.1016/S1462-0758(99)00014-XSearch in Google Scholar

[110] Rusciano GM, Obropta CC. Efficiency of bioretention systems to reduce fecal coliform counts in stormwater. North American Surface Water Quality Conference and Exposition, Orlando, FL. July. 2005. http://water.usgs.gov/wrri/AnnualReports/2004/FY2004_NJ_Annual_Report.pdfSearch in Google Scholar

[111] Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP, Kelly VR, et al. Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci USA. 2005;102(38):13517-13520. DOI: 10.1073/pnas.0506414102.10.1073/pnas.0506414102122465416157871Search in Google Scholar

eISSN:
1898-6196
Language:
English