1. bookVolume 17 (2017): Issue 4 (November 2017)
Journal Details
License
Format
Journal
eISSN
1314-4081
First Published
13 Mar 2012
Publication timeframe
4 times per year
Languages
English
Open Access

Robust Active Contour Model Guided by Local Binary Pattern Stopping Function

Published Online: 30 Nov 2017
Volume & Issue: Volume 17 (2017) - Issue 4 (November 2017)
Page range: 165 - 182
Journal Details
License
Format
Journal
eISSN
1314-4081
First Published
13 Mar 2012
Publication timeframe
4 times per year
Languages
English

1. Ben Ayed, I., A. Mitich e. A Region Merging Prior for Variational Level Set Image Segmentation. - IEEE Transactions on Image Processing, Vol. 17, 2008, No 12, pp. 2301-2311.10.1109/TIP.2008.200642519004703Search in Google Scholar

2. Melouah, A., S. Layach i. A Novel Automatic Seed Placement Approach for Region Growing Segmentation in Mammograms. - In: Proc. of International Conference on Intelligent Information Processing, Security and Advanced Communication, Batna, Algeria, 2015, pp. 273-277.10.1145/2816839.2816892Search in Google Scholar

3. Kass, M., A. Witkin, D. Terzopoulo s. Snakes. Active Contour Models. - International Journal of Computer Vision, Vol. 1, 1987, No 4, pp. 321-331.10.1007/BF00133570Search in Google Scholar

4. Xu, C., J. Prince. Snakes, Shapes, and Gradient Vector Flow. - IEEE Transactions on Image Processing, Vol. 7, 1998, No 3, pp. 359-369.10.1109/83.66118618276256Search in Google Scholar

5. Wu, Y., Y. Wang, Y. Jia. Adaptive Diffusion Flow Active Contours for Image Segmentation. - Computer Vision and Image Understanding, Vol. 117, 2013, No 10, pp. 1421-1435.10.1016/j.cviu.2013.05.003Search in Google Scholar

6. Caselles, V., F. Catté, T. Coll, F. Dibos. A Geometric Model for Active Contours in Image Processing. - Numer. Math, Vol. 66, 1993, No 1, pp.1-31.10.1007/BF01385685Search in Google Scholar

7. Caselles, V., R. Kimmel, G. Sapiro. Geodesic Active Contours. - International Journal of Computer Vision, Vol. 22, 1997, No 1, pp. 61-79.10.1023/A:1007979827043Open DOISearch in Google Scholar

8. Malladi, R., J. A. Sethian, B. C. Vemuri. Shape Modeling with Front Propagation: A Level Set Approach. - IEEE Transactions on Pattern Analysis Machine Intellegence, Vol. 17, 1995, No 2, pp. 158-175.10.1109/34.368173Search in Google Scholar

9. Kumar, A., P. Olver, A. J. Yezzi, S. Kichenassamy, A. Tannenbaum. A Geometric Snake Model for Segmentation of Medical Imagery. - IEEE Trans. Med. Imag., Vol. 16, 1997, No 2, pp. 199-209.10.1109/42.5636659101329Open DOISearch in Google Scholar

10. Li, C., C. Xu, C. Gui, M. D. Fox. Distance Regularized Level Set Evolution and Its Application to Image Segmentation. - IEEE Trans. Image Process, Vol. 19, 2010, No 12, pp. 3243-3254.10.1109/TIP.2010.206969020801742Search in Google Scholar

11. Chan, T., L. Vese. Active Contours without Edges. - IEEE Trans. Image Process, Vol. 10, 2001, No 2, pp. 266-277.10.1109/83.902291Search in Google Scholar

12. Kimia, B. B., A. Tannenbaum, S. Zucker. Shapes, Shocks, and Deformations I: The Components of Two dimensional Shape and the Reaction-Diffusion Space. - International Journal of Computer Vision, Vol. 15, 1995, No 3, pp. 189-224.10.1007/BF01451741Open DOISearch in Google Scholar

13. Osher, S., J. A. Sethia n. Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Halilton-Jacobi Formulations. - Journal of Computational Physics, Vol. 79, 1988, No 1, pp. 12-49.10.1016/0021-9991(88)90002-2Search in Google Scholar

14. Ksantini, R., B. Boufama, S. J. Memar. A New Efficient Active Contour Model without Local Initializations for Salient Object Detection. - EURASIP Journal on Image and Video Processing, Vol. 40, 2013.10.1186/1687-5281-2013-40Search in Google Scholar

15. Azizi, A., K. Elkour d. Fast Region-Based Active Contour Model Driven by Local Signed Pressure Force. - ELCVIA Electronic Letters on Computer Vision and Image Analysis, Vol. 15, 2016, No 1, pp.1-13.10.5565/rev/elcvia.794Search in Google Scholar

16. Lankton, S., A. Tannenbaum. Localizing Region-Based Active Contours. - IEEE Trans. Image Process, Vol. 17, 2008, No 11, pp. 2029-2039.10.1109/TIP.2008.2004611279611218854247Open DOISearch in Google Scholar

17. Talu, M. F. ORACM: Online Region-Based Active Contour Model. - Expert Systems with Applications, Vol. 40, 2013, No 16, pp. 6233-6240.10.1016/j.eswa.2013.05.056Open DOISearch in Google Scholar

18. Li, C., C. Kao, J. Gore, Z. Ding. Implicit Active Contours Driven by Local Binary Fitting Energy. - In: Proc. of IEEE Conf. Computer Vision and Pattern Recognition, Minneapolis, 2007, pp. 1-7.10.1109/CVPR.2007.383014Search in Google Scholar

19. Liu, S., Y. Peng. A Local Region-Based Chan-Vese Model for Image Segmentation. - Pattern Recognition, Vol. 45, 2012, No 7, pp. 2769-2779.10.1016/j.patcog.2011.11.019Search in Google Scholar

20. Li, C., R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, J. C. Gore. A Level Set Method for Image Segmentation in the Presence of Intensity Inhomogeneities with Application to MRI. - IEEE Trans. Image Process, Vol. 20, 2011, No 7, pp. 2007-2016.10.1109/TIP.2011.2146190695221421518662Open DOISearch in Google Scholar

21. Zhang, K., L. Zhang, K-M. Lam, D. Zhang. A Level Set Approach to Image Segmentation with Intensity Inhomogeneity. - IEEE Transactions on Cybernetics, Vol. 46, 2016, No 2, pp. 546-557.10.1109/TCYB.2015.240911925781973Open DOISearch in Google Scholar

22. Zhang, Y., B. J. Matuszewski, L.-K. Shark, C. J. Moor e. Medical Image SegmentationUsing New Hybrid Level-Set Method. - In: Proc. of 5th International Conference Bio Medical Visualization Information Visualization in Medical and Biomedical Informatics, 2008, pp. 71-76.10.1109/MediVis.2008.12Search in Google Scholar

23. Wang, L., C. Li, Q. Sun. Active Contours Driven by Local and Global Intensity Fitting Energy with Application to Brain MR Image Segmentation. - In: Comput. Med. Imaging Graph, Vol. 33, 2009, No 7, pp. 520-531.10.1016/j.compmedimag.2009.04.01019482457Search in Google Scholar

24. Azizi, A., K. Elkour d. A Hybrid Active Contour without Re-Initialization. - In: Proc. of International Conference on Intelligent Information Processing, Security and Advanced Communication, Batna, Algeria, 2015, pp. 239-244.Search in Google Scholar

25. Zhang, K., L. Zhang, H. Song, D. Zhang. Reinitialization-Free Level Set Evolution via Reaction Diffusion. - IEEE Trans. Image Process, Vol. 22, 2013, No 1, pp. 258-271.10.1109/TIP.2012.221404622910114Search in Google Scholar

26. Ojala, T., M. Pietikäinen, T. Mäenpää. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. - IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, 2002, pp. 971-987.10.1109/TPAMI.2002.1017623Open DOISearch in Google Scholar

27. Mäenpää, T. The Local Binary Pattern Approach to Texture Analysis - Extensions and Applications. - Dissertation, University of Oulu, Finland, 2003.Search in Google Scholar

28. Teutsch, M., J. Beyere r. Noise Resistant Gradient Calculation and Edge Detection Usin Local Binary Patterns. - In: Lecture Notes in Computer Science (LNCS). Vol. 7728. Computer Vision - ACCV 2012 Workshops. Berlin, Heidelberg, Springer, 2013, pp. 1-14.Search in Google Scholar

29. Altarawneh, N. M., S. Luo, B. Regan, C. Sun. A Modified Distance Regularized Level Set Model for Liver Segmentation from Ct Images. - Signal and Image Processing, Vol. 6, 2015, No 1, pp. 1-11.10.5121/sipij.2015.6101Search in Google Scholar

30. Zhang, K., L. Zhang, H. Song, W. Zhou. Active Contours with Selective Local or Global Segmentation: A New Formulation and Level Set Method. - Image and Vision Computing, Vol. 28, 2010, No 4, pp. 668-676.10.1016/j.imavis.2009.10.009Open DOISearch in Google Scholar

31. Abdelsamea, M. M., G. Gnecco, M. M. Gaber, E. Elyan. On the Relationship between Variational Level Set-Based and SOM-Based Active Contours. - Computational Intelligence and Neuroscience, 2015. 19 p. Article ID 109029.10.1155/2015/109029441757225960736Search in Google Scholar

32. Ahonen, T., A. Hadid, M. Pietikäinen. Face Description with Local Binary Patterns: Application to Face Recognition. - IEEE Trans. Pattern Anal. Mach. Intell, Vol. 28, 2006, No 12, pp. 2037-2041.10.1109/TPAMI.2006.24417108377Open DOISearch in Google Scholar

33. Mandava, A. K., E. E. Regentov a. Speckle Noise Reduction Using Local Binary Pattern. - In: Proc. of 2nd International Conference on Communication, Computing &Amp; Security, Vol. 6, 2012, pp. 574-581.10.1016/j.protcy.2012.10.069Search in Google Scholar

34. Teutsch, M., P. Trantelle, J. Beyere r. Adaptive Real-Time Image Smoothing Using Local Binary Patterns and Gaussian Filters. - In: Proc. of 20th IEEE International Conference on Image Processing, Melbourne, 2013, pp. 1120-1124.10.1109/ICIP.2013.6738231Search in Google Scholar

35. Mukherjee, S., S. T. Acton. Region Based Segmentation in Presence of Intensity Inhomogeneity Using Legendre Polynomials. - IEEE Signal Processing Letters, Vol. 22, 2015, No 3, pp. 298-302.10.1109/LSP.2014.2346538Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo