Open Access

Using Fitness Value for Monitoring Kiwifruit’s Variant Seedling in Tissue Culture

Cybernetics and Information Technologies's Cover Image
Cybernetics and Information Technologies
Issue Title: Special Issue on Application of Advanced Computing and Simulation in Information Systems


1. Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor, Michigan, University of Michigan Press, 1975.Search in Google Scholar

2. Aditi, K., Y. T. Oscar, J. Wenyi et al. Iterative Reliability-Based Decoding of Linear Block Codes with Adaptive Belief Propagation. - IEEE Communications Letters, Vol. 9, 2005, No 1, pp. l067-1069.10.1109/LCOMM.2005.1576590Search in Google Scholar

3. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs. Berlin, Springer-Verlag, 1996.10.1007/978-3-662-03315-9Search in Google Scholar

4. Simmons, M. P., L. B. Zhang, C. T. Webb, K. Müller. A Penalty of Using Anonymous Dominant Markers (AFLPs, ISSRs, and RAPDs) for Phylogenetic Inference. - Molecular Phylogenetics and Evolution, Vol. 42, 2007, No 2, pp. 528-542.10.1016/j.ympev.2006.08.00816997581Search in Google Scholar

5. Venkat, S. K., P. Bommisetty, M. S. Patil, L. Reddy, A. Chennareddy. The Genetic Linkage Maps of Anthurium Species Based on RAPD, ISSR and SRAP Markers. - Scientia Horticulturae, Vol. 178, 2014, pp. 132-137.10.1016/j.scienta.2014.08.017Search in Google Scholar

6. Kayis, S. A. Evaluation of Confidence Limit Estimates of Cluster Analysis on Molecular Marker Data. - Journal of the Science of Food and Agriculture, Vol. 92, 2012, No 4, pp. 776-780.10.1002/jsfa.464221969118Search in Google Scholar

7. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison- Wesley, Reading: MA, 1989.Search in Google Scholar

8. Davis, L. Handbook of Genetic Algorithms. New York, Van Nostrand Reinhold, 1991.Search in Google Scholar

9. Back, T. Evolutionary Algorithms in Theory and Practice. Oxford, Oxford University Press, 1996.10.1093/oso/9780195099713.003.0007Search in Google Scholar

10. Jones, D. R., M. Schonlau, W. J. Welch. Efficient Global Optimization of Expensive Black-Box Functions. - Journal of Global Optimization, Vol. 13, 1998, pp. 445-492.10.1023/A:1008306431147Search in Google Scholar

11. Beghi, A., L. Cecchinato, M. Rampazo. A Multi-Phase Genetic Algorithm for the Efficient Management of Multi-Chiller Systems. - Energy Conversion and Management, Vol. 52, 2011, pp. 1650-1661.10.1016/j.enconman.2010.10.028Search in Google Scholar

12. Vakkas, U. S., M. Demirtas. Modeling and Control of V/f Controlled Induction Motor Using Genetic-ANFIS Algorithm. - Energy Conversion and Management, Vol. 50, 2009, 786-791.10.1016/j.enconman.2008.09.032Search in Google Scholar

13. Baghernejad, A., M. Yaghoubi. Exergoeconomic Analysis and Optimization of an Integrated Solar Combined Cycle System (ISCCS) Using Genetic Algorithm. - Energy Conversion and Management, Vol. 52, 2011, pp. 2193-2203.10.1016/j.enconman.2010.12.019Search in Google Scholar

14. Schippmann, B., H. Burchard. Rosenbrock Methods in Biogeochemical Modelling - A Comparison to Runge-Kutta Methods and Modified Patankar Schemes. - Ocean Model, Vol. 37, 2011, pp. 112-121.10.1016/j.ocemod.2011.01.007Search in Google Scholar

15. Berardi, M. Rosenbrock-Type Methods Applied to Discontinuous Differential Systems. - Mathematics and Computers in Simulation, Vol. 95, 2013, pp. 229-243.10.1016/j.matcom.2013.05.006Search in Google Scholar

16. Lipowski, A., D. Lipowska. Roulette-Wheel Selection via Stochastic Acceptance. - Physica A: Statistical Mechanics and Its Applications, Vol. 391, 2012, No 6, pp. 2193-2196.10.1016/j.physa.2011.12.004Search in Google Scholar

17. Yang, X. F., J. Li, H. Pei et al. Pattern Recognition Analysis of Proteins Using DNADecorated Catalytic Gold Nanoparticles. - Small, Vol. 9, 2013, No 17, pp. 2844-2849.10.1002/smll.20120277223447503Search in Google Scholar

18. Li, L. B., S. H. He, S. Li et al. A Closer Look at the Russian Roulette Problem: A Re-Examination of the Nonlinearity of the Prospect Theory’s Decision Weight pi. - International Journal of Approximate Reasoning, Vol. 50, 2009, No 3, pp. 515-520.10.1016/j.ijar.2008.10.004Search in Google Scholar

19. Li, Z., N. Wang, A Modified DNA Genetic Algorithm for Parameter Estimation of the 2-Chlorophenol Oxidation in Supercritical Water. - Applied Mathematical Modeling, Vol. 01.37, 2013, No 3, pp. 1137-1146.10.1016/j.apm.2012.03.046Search in Google Scholar

20. Lobry, J. R., N. Sueoka. Asymmetric Directional Mutation Pressures in Bacteria. - Genome Biology, Vol. 3, 2002, No 10, pp. 00-14.10.1186/gb-2002-3-10-research005813462512372146Search in Google Scholar

21. Shah, K., A. Krishnamachari. Nucleotide Correlation Based Measure for Identifying Origin of Replication in Genomic Sequences. - BioSystems, Vol. 107, 2012, No 1, pp. 52-55.10.1016/j.biosystems.2011.09.00321945744Search in Google Scholar

22. Schneider, T. D. A Brief Review of Molecular Information Theory. - Nano Communication Networks, Vol. 1, 2010, No 3, pp. 173-180.10.1016/j.nancom.2010.09.002322091622110566Search in Google Scholar

23. Rosenbrock, H. H. An Automatic Method for Finding the Greatest or Least Value of a Function. - Computer Journal, Vol. 3, 1960, pp. 175-184. 10.1093/comjnl/3.3.175Search in Google Scholar

Publication timeframe:
4 times per year
Journal Subjects:
Computer Sciences, Information Technology