1. bookVolume 16 (2016): Issue 2 (June 2016)
Journal Details
License
Format
Journal
eISSN
1314-4081
First Published
13 Mar 2012
Publication timeframe
4 times per year
Languages
English
Open Access

Evolutionary Computing Based on QoS Oriented Energy Efficient VM Consolidation Scheme for Large Scale Cloud Data Centers

Published Online: 22 Jun 2016
Volume & Issue: Volume 16 (2016) - Issue 2 (June 2016)
Page range: 97 - 112
Journal Details
License
Format
Journal
eISSN
1314-4081
First Published
13 Mar 2012
Publication timeframe
4 times per year
Languages
English

1. Fraser, C. K., et al. Live Migration of Virtual Machines. - In: Proc. of 2nd USENIX Symposium on Networked Systems Design and Implementation, Berkeley, CA, 2005, pp. 273-286.Search in Google Scholar

2. Vogels, W. Beyond Server Consolidation. - ACM Queue, 2008, No 1, pp. 20-26.10.1145/1348583.1348590Search in Google Scholar

3. Feller, E., C. Morin et al. A Case for Fully Decentralized Dynamic VM Consolidation in Clouds. - In: Proc. of 4th IEEE International Conference, Cloud Computing Technology and Science, Taipei, Taiwan, 2012, pp. 26-33.10.1109/CloudCom.2012.6427585Search in Google Scholar

4. Murtazaev, S. O. Sercon: Server Consolidation Algorithm Using Live Migration of Virtual Machines for Green Computing. - IETE Technical Review, Vol. 28, 2011, No 3, pp. 212-231.10.4103/0256-4602.81230Search in Google Scholar

5. Marzolla, M., O. Babaoglu et al. Server Consolidation in Clouds through Gossiping. -In: Proc. of 12th IEEE International Symposium, World of Wireless, Mobile and Multimedia Networks, Lucca, Italy, 2011, pp. 1-6.10.1109/WoWMoM.2011.5986483Search in Google Scholar

6. Beloglazov, J. A., et al. Energy-Aware Resource Allocation Heuristics for Efficient Management of Data Centers for Cloud Computing. - Grid Computing and e-Science, Future Generation Computer Systems, Vol. 28, 2012, pp. 755-768.10.1016/j.future.2011.04.017Search in Google Scholar

7. Beloglazov, R. B. Optimal Online Deterministic Algorithms and Adaptive Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual Machines in Cloud Data Centers. - Concurrency and Computation: Practice and Experience, Vol. 24, 2012, No 13, pp. 1397-1420.10.1002/cpe.1867Search in Google Scholar

8. Farahnakian, F., P. Liljeberg et al. Linear regression Based CPU Usage Prediction Algorithm for Live Migration of Virtual Machines in Data Centers. - In: Proc. of 39th Euromicro Conference of Software Engineering and Advanced Applications, Santander, Spain, 2013, pp. 357-364.10.1109/SEAA.2013.23Search in Google Scholar

9. Farahnakian, F., T. Pahikkala et al. Energy Aware Consolidation Algorithm Based on K-Nearest Neighbor Regression for Cloud Data Centers. - In: Proc. of 6th IEEE/ACM International Conference on Utility and Cloud Computing, Dresden, Germany, 2013.10.1109/UCC.2013.51Search in Google Scholar

10. Wood, T., P. Shenoy et al. Sandpiper: Black-Box and Gray-Box Resource Management for Virtual Machines. - Computer Networks, Vol. 53, 2009, pp. 2923-2938.10.1016/j.comnet.2009.04.014Search in Google Scholar

11. Ajiro, Y., A. Tanaka. Improving Packing Algorithms for Server Consolidation. - In: Proc. of International Conference for the Computer Measurement Group, San Diego, California, USA, 2007, pp. 399-407.Search in Google Scholar

12. Wang, M., X. Meng et al. Consolidating Virtual Machines with Dynamic Bandwidth Demand in Data Centers. - In: Proc. of 30th IEEE International Conference on Computer Communications, Shanghai, China, 2011, pp. 71-75.10.1109/INFCOM.2011.5935254Search in Google Scholar

13. Harman, M., K. Lakhotia et al. Cloud Engineering is Search Based Software Engineering Too. - Journal of Systems and Software, Vol. 86, 2013, No 9, pp. 2225-2241. 10.1016/j.jss.2012.10.027Search in Google Scholar

14. Dorigo, M., G. Di Caro et al. Ant Algorithms for Discrete Optimization. - Artificial Life, Vol. 5, 1999, No 2, pp. 137-172.10.1162/10645469956872810633574Search in Google Scholar

15. Dorigo, M., L. Gambardell a. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. - IEEE Transactions on Evolutionary Computation, Vol. 1, 1997, No 1, pp. 53-66.10.1109/4235.585892Search in Google Scholar

16. Barbagallo, D., E. Di Nitto et al. A Bio-Inspired Algorithm for Energy Optimization ina Self-Organizing Data Center. - Self-Organizing Architectures, Springer, 2010, pp. 127-151.10.1007/978-3-642-14412-7_7Search in Google Scholar

17. Chen , H., L. Xiong et al. Cloud Task Scheduling Simulation via Improved Ant Colony Optimization Algorithm. - Journal of Convergence Information Technology, 2013.Search in Google Scholar

18. Dong, Y. S., G. C. Xu et al. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform. - The Scientific World Journal, 2014, pp. 1-12.10.1155/2014/259139410936825097872Search in Google Scholar

19. Feller, E. E. et al. Energy-Aware Distributed Ant Colony Based Virtual Machine Consolidation in Iaa S Clouds Bibliographic Study. - Informatics Mathematics (INRIA), 2012, pp. 1-13.Search in Google Scholar

20. Ferdaus, M. H., M. Murshed et al. Virtual Machine Consolidation in Cloud Data Centers Using ACO Metaheuristic. - In: Proc. of 20th International Conference Euro-Par 2014 Parallel Processing, Porto, Portugal, 2014, pp. 306-317.10.1007/978-3-319-09873-9_26Search in Google Scholar

21. Zhong, H., K. Tao et al. An Approach to Optimized Resource Scheduling Algorithm for Open-Source Cloud Systems. - In: Proc. of China Grid Conference (China Grid), 2010, Fifth Annual, Guangzhou, China, 2010, pp. 124-129.10.1109/ChinaGrid.2010.37Search in Google Scholar

22. Madhusudha n, B., K. C. Sekaran. A Genetic Algorithm Approach for Virtual Machine Placement in Cloud. - In: Proc. of International Conference on Emerging Research in Computing, Information, Communication and Applications, 2013, pp. 115-122.Search in Google Scholar

23. Tang, M., S. Pan. A Hybrid Genetic Algorithm for the Energy-Efficient Virtual Machine Placement Problem in Data Centers. - Neural Processing Letters, Vol. 41, 2015, No 2, pp. 211-221.10.1007/s11063-014-9339-8Search in Google Scholar

24. Cleveland, W. S. Robust Locally Weighted Regression and Smoothing Scatterplots. - Journal of the American Statistical Association, Vol. 74, 1979, No 368, pp. 829-836.10.1080/01621459.1979.10481038Search in Google Scholar

25. Verma, G. D. et al. Server Workload Analysis for Power Minimization Using Consolidation. - In: Proc. of 2009 USENIX Annual Technical Conference, San Diego, China, 2009, pp. 28-42.Search in Google Scholar

26. Abdi, H. Multiple Correlation Coefficient. - N. J. Salkind, Ed. Sage, Thousand Oaks, CA, USA, 2007.Search in Google Scholar

27. Park, K. S., V. S. Pai. Co Mon: A Mostly-Scalable Monitoring System for Planet-Lab. - ACM SIGOPS Operating Systems Review, Vol. 40, 2006, No 1, pp. 65-74.10.1145/1113361.1113374Search in Google Scholar

28. Theja, P. R., S. K. K. Babu. An Evolutionary Computing Based Energy Efficient VM Consolidation Scheme for Optimal Resource Utilization and Qo S Assurance. - Indian Journal of Science and Technology, 77179, Vol. 8, 2015, No 26, pp. 1-11.10.17485/ijst/2015/v8i26/77179Search in Google Scholar

29. Theja, P. R., S. K. K. Babu. An Adaptive Genetic Algorithm Based Robust Qo S Oriented Green Computing Scheme for VM Consolidation in Large Scale Cloud Infrastructures. - Indian Journal of Science and Technology, 79175, Vol. 8, 2015, No 27, pp. 1-13. 10.17485/ijst/2015/v8i27/79175Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo