Open Access

Some results on discrete eigenvalues for the Stochastic Nonlinear Schrödinger Equation in fiber optics


Cite

1. G. P. Agrawal, Nonlinear Fiber Optics. Academic Press, fifth ed., 2012.10.1016/B978-0-12-397023-7.00011-5Search in Google Scholar

2. M. Secondini and E. Forestieri, The nonlinear Schrödinger equation in fiber-optic systems, Rivista di Matematica della Universitfia di Parma, vol. 8, pp. 69-98, 2008.Search in Google Scholar

3. J. G. Proakis, Digital Communications. McGraw-Hill, 1983.Search in Google Scholar

4. A. Papoulis, Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 1984.Search in Google Scholar

5. A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in H1, Stochastic Analysis and Applications, vol. 21, no. 1, pp. 97-126, 2003.10.1081/SAP-120017534Search in Google Scholar

6. M. I. Yousefi and F. R. Kschischang, Information transmission using the nonlinear Fourier transform, Part I: Mathematical tools, IEEE Trans- actions on Information Theory, vol. 60, no. 7, pp. 4312-28, 2014.Search in Google Scholar

7. S. Civelli, L. Barletti, and M. Secondini, Numerical methods for the inverse nonlinear Fourier transform, in Tyrrhenian International Work- shop on Digital Communications, TIWDC 2015, IEEE, 2015.10.1109/TIWDC.2015.7323325Search in Google Scholar

8. S. A. Derevyanko, J. E. Prilepsky, and S. K. Turitsyn, Capacity estimates for optical transmission based on the nonlinear Fourier transform, Nature Communications, vol. 7, no. 12710, 2016.Search in Google Scholar

9. L. Barletti and M. Secondini, Signal-noise interaction in nonlinear optical fibers: a hydrodynamic approach, Optics Express, vol. 23, no. 21, pp. 27419-33, 2015.Search in Google Scholar

10. P. P. Mitra and J. B. Stark, Nonlinear limits to the information capacity of optical fibre communications, Nature, vol. 411, pp. 1027-30, 2001.Search in Google Scholar

11. R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, Capacity limits of information transport in fiber-optic networks, Physical Review Letters, vol. 101, no. 16, p. 163901, 2008.Search in Google Scholar

12. A. D. Ellis, J. Zhao, and D. Cotter, Approaching the non-linear shannon limit, Journal of Lightwave Technology, vol. 28, pp. 423-433, 2010.10.1109/JLT.2009.2030693Search in Google Scholar

13. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, Capacity limits of optical fiber networks, Journal of Lightwave Technol- ogy, vol. 28, no. 4, pp. 662-701, 2010.10.1109/JLT.2009.2039464Search in Google Scholar

14. D. J. Richardson, Filling the light pipe, Science, vol. 330, pp. 327-328, October 2010.10.1126/science.119170820947751Search in Google Scholar

15. R. I. Killey and C. Behrens, Shannon's theory in nonlinear systems, Journal of Modern Optics, vol. 58, no. 1, pp. 1-10, 2011.10.1080/09500340.2010.539710Search in Google Scholar

16. G. Busoni and L. Prati, Some remarks on a linearized Schrödinger equation, Rendiconti Lincei - Matematica e Applicazioni, vol. 26, pp. 1-25, 2015.10.4171/RLM/702Search in Google Scholar

17. A. Hasegawa and T. Nyu, Eigenvalue communications, Journal of Light- wave Technology, vol. 11, no. 3, pp. 395-399, 1993.10.1109/50.219570Search in Google Scholar

18. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Nonlinearevolution equations of physical significance, Physical Review Letters, vol. 31, no. 2, pp. 125-127, 1973.10.1103/PhysRevLett.31.125Search in Google Scholar

19. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, The inverse scattering transform - Fourier analysis for nonlinear problems, Studies in Applied Mathematichs, vol. LIII, no. 4, pp. 249-315, 1974. 10.1002/sapm1974534249Search in Google Scholar

20. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Trans- form. SIAM Studies in Applied Mathematics, SIAM, 1981.10.1137/1.9781611970883Search in Google Scholar

21. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equa- tions and Inverse Scattering. London Mathematical Society Lecture Note Series, Cambridge University Press, 1991.10.1017/CBO9780511623998Search in Google Scholar

22. S. Oda, A. Maruta, and K. Kitayama, All-optical quantization scheme based on fiber nonlinearity, IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 587-589, 2004.10.1109/LPT.2003.822221Search in Google Scholar

23. E. Meron, M. Shtaif, and M. Feder, On the achievable communication rates of generalized soliton transmission systems, tech. rep., Preprint at https://arxiv.org/pdf/1207.0297v2.pdf, 2012.Search in Google Scholar

24. H. Terauchi and A. Maruta, Eigenvalue modulated optical transmission system based on digital coherent technology, in Proceedings of 18th Op- toElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), (Kyoto, Japan), pp. 1-2, IEEE, June 30-July 4, 2013.10.1364/OECC_PS.2013.WR2_5Search in Google Scholar

25. M. I. Yousefi and F. R. Kschischang, Information transmission using the nonlinear Fourier transform, Part III: Spectrum modulation, IEEE Transactions on Information Theory, vol. 60, no. 7, pp. 4346-69, 2014.Search in Google Scholar

26. Z. Dong, S. Hari, T. Gui, K. Zhong, M. I. Yousefi, C. Lu, P.-K. A. Wai, F. R. Kschischang, and A. P. T. Lau, Nonlinear frequency division multiplexed transmission based on nft, IEEE Photonics Technology Letters, vol. 27, no. 15, pp. 1621-23, 2015.Search in Google Scholar

27. S. Hari, M. I. Yousefi, and F. R. Kschischang, Multieigenvalue communication, Journal of Lightwave Technology, vol. 34, no. 13, pp. 3110-17, 2016.Search in Google Scholar

28. J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, Nonlinear spectral management: linearization of the lossless fiber channel, Optics Express, vol. 21, no. 20, pp. 24344-67, 2013.Search in Google Scholar

29. J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels, Physical Review Letters, vol. 113, p. 013901, July 2014.Search in Google Scholar

30. S. T. Le, J. E. Prilepsky, and S. K. Turitsyn, Nonlinear inverse synthesis for high spectral eficiency transmission in optical fibers, Optic Express, vol. 22, no. 22, pp. 26720-41, 2014.Search in Google Scholar

31. S. T. Le, J. E. Prilepsky, and S. K. Turitsyn, Nonlinear inverse synthesis technique for optical links with lumped amplification, Optic Express, vol. 23, no. 7, pp. 8317-28, 2015.Search in Google Scholar

32. D. J. Kaup, A perturbation expansion for the Zakharov-Shabat inverse scattering transform, SIAM Journal on Applied Mathematics, vol. 31, no. 1, pp. 121-133, 1976.10.1137/0131013Search in Google Scholar

33. V. I. Karpman and E. M. Maslov, A perturbation theory for the Korteweg de-Vries equation, Physics Letters A, vol. 60, no. 4, pp. 307-308, 1977.10.1016/0375-9601(77)90107-4Search in Google Scholar

34. D. J. Kaup and A. C. Newell, Solitons as particles, oscillators, and in slowly changing media: A singular perturbation theory, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 361, no. 1707, pp. 413-446, 1978.Search in Google Scholar

35. V. I. Karpman and V. V. Solov'ev, A perturbational approach to the two-soliton systems, Physica D: Nonlinear Phenomena, vol. 3, no. 3, pp. 487-502, 1981.10.1016/0167-2789(81)90035-XSearch in Google Scholar

36. V. V. Konotop and L. Vfiazquez, Nonlinear Random Waves. World Scienti fic, 1994.10.1142/2320Search in Google Scholar

37. P. Kazakopoulos and A. L. Moustakas, Nonlinear Schrödinger equation with random Gaussian input: Distribution of inverse scattering data and eigenvalues, Physical Review E, vol. 78, no. 1, 016603, pp. 1-7, 2008.10.1103/PhysRevE.78.01660318764070Search in Google Scholar

38. G. Falkovich, I. Kolokolov, V. Lebedev, V. Mezentsev, and S. Turitsyn, Non-Gaussian error probability in optical soliton transmission, Physica D: Nonlinear Phenomena, vol. 195, no. 1-2, pp. 1-28, 2004.10.1016/j.physd.2004.01.044Search in Google Scholar

39. N. J. Zabusky and M. D. Kruskal, Interaction of \solitons" in a collisionless plasma and the recurrence of initial states, Physical Review Letters, vol. 15, no. 6, pp. 240-243, 1965.10.1103/PhysRevLett.15.240Search in Google Scholar

40. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Method for solving the Korteweg-de Vries equation, Physical Review Letters, vol. 19, no. 19, pp. 1095-97, 1967.Search in Google Scholar

41. P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Communications on Pure and Applied Mathematics, vol. XXI, pp. 467-490, 1968.10.1002/cpa.3160210503Search in Google Scholar

42. V. E. Zacharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP, vol. 34, no. 1, pp. 62-69, 1972.Search in Google Scholar

43. S. Wahls and H. V. Poor, Introducing the fast nonlinear Fourier transform, in IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5780-84, IEEE, 2013.Search in Google Scholar

44. S. Wahls and H. V. Poor, Fast inverse nonlinear Fourier transform for generating multi-solitons in optical fiber, in IEEE International Sym- posium on Information Theory, pp. 1676-80, IEEE, 2015.Search in Google Scholar

45. E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Op- tical Communication Networks. Wiley Series in Microwave and Optical Engineering, Wiley, 1998.Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics