Open Access

Transcriptional immunoresponse of tissue-specific macrophages in swine after infection with African swine fever virus


Cite

1. Afonso C.L., Piccone M.E., Zaffuto K.M., Neilan J., Kutish G.F., Lu Z., Balinsky C.A., Gigg T.R., Bean T.J., Zsak L., Rock D.L.: African swine fever virus multigene family 360 and 530 genes affect host interferon response. J Virol 2004, 78, 1858-1864.10.1128/JVI.78.4.1858-1864.2004 Search in Google Scholar

2. Alcami A., Lira S.A.: Modulation of chemokine activity by viruses. Curr Opin Immunol 2010, 22, 482-487.10.1016/j.coi.2010.06.004637346120598516 Search in Google Scholar

3. Alonso C., Galindo I., Cuesta-Geijo M.A., Cabezas M., Hernaez B., Muñoz-Moreno R.: African swine fever virus-cell interactions: from virus entry to cell survival. Virus Res 2013, 173, 42-57.10.1016/j.virusres.2012.12.006711442023262167 Search in Google Scholar

4. Basta S., Knoetig S.M., Spagnuolo-Weaver M., Allan G., McCullough K.C.: Modulation of monocytic cell activity and virus susceptibility during differentiation into macrophages. J Immunol 1999, 162, 3961-3969. Search in Google Scholar

5. Blome S., Gabriel C., Beer M.: Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res 2013, 173, 122-130.10.1016/j.virusres.2012.10.02623137735 Search in Google Scholar

6. Chamorro S., Revilla C., Alvarez B., Alonso F., Ezquerra A., Domínguez J.: Phenotypic and functional heterogeneity of porcine blood monocytes and its relation with maturation. Immunology 2005, 114, 63-71.10.1111/j.1365-2567.2004.01994.x178206215606796 Search in Google Scholar

7. Chitko-McKown C.G., Chapes S.K., Miller L.C., Riggs P.K., Ortega M.T., Green B.T., McKown R.D.: Development and characterization of two porcine monocyte-derived macrophage cell lines. Results in Immunology, Vol. 3, 2013, 26-32.10.1016/j.rinim.2013.03.001363100423610747 Search in Google Scholar

8. de Oliveira V.L., Almeida S.C.P., Soares H.R., Crespo A., Marshall-Clarke S., Parkhouse R.M.E. A novel TLR3 inhibitor encoded by African swine fever virus (ASFV). Arch Virol 2011, 156, 597-609.10.1007/s00705-010-0894-7306639021203785 Search in Google Scholar

9. Falvo J.V., Uglialoro A.M., Brinkman B.M., Merika M., Parekh B.S., Tsai E.Y., King H.C., Morielli A.D., Peralta E.G., Maniatis T., Thanos D., Goldfeld A.E.: Stimulus-specific assembly of enhancer complexes on the tumor necrosis factor alpha gene promoter. Mol Cell Biol 2000, 20, 2239-2247.10.1128/MCB.20.6.2239-2247.200011084010688670 Search in Google Scholar

10. Fishbourne E., Abrams C.C., Takamatsu H.H., Dixon L.K.: Modulation of chemokine and chemokine receptor expression following infection of porcine macrophages with African swine fever virus. Vet Microbiol 2013, 162, 937-943.10.1016/j.vetmic.2012.11.027360558523265239 Search in Google Scholar

11. Galindo I., Cuesta-Geijo M.A., Hlavova K., Muñoz-Moreno R., Barrado-Gil L., Dominguez J., Alonso C.: African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus Res 2015, 200, 45-55.10.1016/j.virusres.2015.01.02225662020 Search in Google Scholar

12. Ganguly D., Paul K., Bagchi J., Rakshit S., Mandal L., Bandyopadhyay G., Bandyopadhyay S.: Granulocyte-macrophage colony-stimulating factor drives monocytes to CD14low CD83+ DCSIGN- interleukin-10-producing myeloid cells with differential effects on T-cell subsets. Immunology 2007, 121, 499-507.10.1111/j.1365-2567.2007.02596.x Search in Google Scholar

13. Gil S., Sepúlveda N., Albina E., Leitão A., Martins C.: The lowvirulent African swine fever virus (ASFV/NH/P68) induces enhanced expression and production of relevant regulatory cytokines (IFNalpha, TNFalpha and IL12p40) on porcine macrophages in comparison to the highly virulent ASFV/L60. Arch Virol 2008, 153, 1845-1854.10.1007/s00705-008-0196-5 Search in Google Scholar

14. Gómez-Villamandos J.C., Bautista M.J., Sánchez-Cordón P.J., Carrasco L.: Pathology of African swine fever: the role of monocyte-macrophage. Virus Res 2013, 173, 140-149.10.1016/j.virusres.2013.01.017 Search in Google Scholar

15. Gómez-Villamandos J.C., Hervás J., Méndez A., Carrasco L., Villeda C.J., Wilkinson P.J., Sierra M.A.: Ultrastructural study of the renal tubular system in acute experimental African swine fever: virus replication in glomerular mesangial cells and in the collecting ducts. Arch Virol 1995, 140, 581-589.10.1007/BF01718433 Search in Google Scholar

16. Gonzalez-Juarrero M., Mebus C.A., Pan R., Revilla Y., Alonso J.M., Lunney J.K.: Swine leukocyte antigen and macrophage marker expression on both African swine fever virusinfected and non-infected primary porcine macrophage cultures. Vet Immunol Immunopathol 1992, 32, 243-259.10.1016/0165-2427(92)90049-V Search in Google Scholar

17. Gordon S., Plüddemann A., Martinez Estrada F.: Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 2014, 262, 36-55.10.1111/imr.12223 Search in Google Scholar

18. Granja A.G., Sanchez E.G., Sabina P., Fresno M., Revilla Y.: African swine fever virus blocks the host cell antiviral inflammatory response through a direct inhibition of PKC-theta-mediated p300 transactivation. J Virol 2009, 83, 969-980.10.1128/JVI.01663-08 Search in Google Scholar

19. Haak-Frendscho M., Wynn TA., Czuprynski C.J., Paulnock D.: Transforming growth factor-beta 1 inhibits activation of macrophage cell line RAW 264.7 for cell killing. Clin Exp Immunol 1990, 82, 404-410.10.1111/j.1365-2249.1990.tb05461.x Search in Google Scholar

20. Haverson K., Bailey M., Higgins V.R., Bland P.W., Stokes C.R.: Characterization of monoclonal antibodies specific for monocytes, macrophages and granulocytes from porcine peripheral blood and mucosal tissues. J Immunol Methods 1994, 170, 233-245.10.1016/0022-1759(94)90398-0 Search in Google Scholar

21. Kreutz M., Andreesen R., Krause S.W., Szabo A., Ritz E., Reichel H.: 1,25-dihydroxyvitamin D3 production and vitamin D3 receptor expression are developmentally regulated during differentiation of human monocytes into macrophages. Blood 1993, 82, 1300-1307.10.1182/blood.V82.4.1300.1300 Search in Google Scholar

22. Kusano Y., Yoshitomi Y., Munesue S., Okayama M., Oguri K.: Cooperation of syndecan-2 and syndecan-4 among cell surface heparan sulfate proteoglycans in the actin cytoskeletal organization of Lewis lung carcinoma cells. J Biochem 2004, 135, 129-137.10.1093/jb/mvh015 Search in Google Scholar

23. Leitão A., Cartaxeiro C., Coelho R., Cruz B., Parkhouse R.M.E., Portugal F.C., Vigário J.D., Martins C.L.V.: The non-hemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J Gen Virol 2001, 82, 513-523.10.1099/0022-1317-82-3-513 Search in Google Scholar

24. McCullough K.C., Schaffner R., Natale V., Kim Y.B., Summerfield A.: Phenotype of porcine monocytic cells: modulation of surface molecule expression upon monocyte differentiation into macrophages. Vet Immunol Immunopathol 1997, 58, 265-275.10.1016/S0165-2427(97)00045-7 Search in Google Scholar

25. Mendoza C., Videgain S.P., Alonso F.: Inhibition of natural killer activity in porcine mononuclear cells by African swine fever virus. Res Vet Sci 1991, 51, 317-321.10.1016/0034-5288(91)90084-2 Search in Google Scholar

26. Powell P.P., Dixon L.K., Parkhouse R.M.: An IkappaB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. J Virol 1996, 70, 8527-8533.10.1128/jvi.70.12.8527-8533.19961909448970976 Search in Google Scholar

27. Rodriguez A., Meyerson H., Anderson J.M.: Quantitative in vivo cytokine analysis at synthetic biomaterial implant sites. J Biomed Mater Res A 2009, 89, 152-159.10.1002/jbm.a.31939386469418431759 Search in Google Scholar

28. Salguero F.J., Sánchez-Cordón P.J., Núñez A., Fernández de Marco M., Gómez-Villamandos J.C.: Proinflammatory cytokines induce lymphocyte apoptosis in acute African swine fever infection. J Comp Pathol 2005, 132, 289-302.10.1016/j.jcpa.2004.11.00415893987 Search in Google Scholar

29. Sánchez E.G., Quintas A., Pérez-Núñez D., Nogal M., Barroso S., Carrascosa Á.L., Revilla Y.: African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog 2012, 8, e1002754.10.1371/journal.ppat.1002754337529322719252 Search in Google Scholar

30. Suzuki H., Katayama N., Ikuta Y., Mukai K., Fujieda A., Mitani H., Araki H., Miyashita H., Hoshino N., Nishikawa H., Nishii K., Minami N., Shiku H.: Activities of granulocyte-macrophage colony-stimulating factor and interleukin-3 on monocytes. Am J Hematol 2004, 75, 179-189.10.1002/ajh.2001015054806 Search in Google Scholar

31. Vallée I., Tait S.W., Powell P.P.: African swine fever virus infection of porcine aortic endothelial cells leads to inhibition of inflammatory responses, activation of the thrombotic state, and apoptosis. J Virol 2001, 75, 10372-10382.10.1128/JVI.75.21.10372-10382.200111461111581405 Search in Google Scholar

32. Whittall J.T., Parkhouse R.M.: Changes in swine macrophage phenotype after infection with African swine fever virus: cytokine production and responsiveness to interferon-gamma and lipopolysaccharide. Immunology 1997, 91, 444-449.10.1046/j.1365-2567.1997.00272.x13640159301535 Search in Google Scholar

33. Wierda W.G., Johnson B.D., Dato M.E., Kim Y.B.: Induction of porcine granulocyte-mediated tumor cytotoxicity by two distinct monoclonal antibodies against lytic trigger molecules (PNK-E/G7). J Immunol 1993, 151, 7117-7127. Search in Google Scholar

34. Zhang F., Hopwood P., Abrams C.C., Downing A., Murray F., Talbot R., Archibald A., Lowden S., Dixon L.K.: Macrophage transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate. J Virol 2006, 80, 10514-10521.10.1128/JVI.00485-06164174817041222 Search in Google Scholar

eISSN:
2300-3235
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Microbiology and Virology, other, Medicine, Veterinary Medicine