Open Access

Cellobiose dehydrogenase: An essential enzyme for lignocellulose degradation in nature – A review / Cellobiosedehydrogenase: Ein essentielles Enzym für den Lignozelluloseabbau in der Natur – Eine Übersicht


Cite

Adav, S.S., Chao, L.T. and S.K. Sze (2013): Protein abundance in multiplexed samples (PAMUS) for quantitation of Trichoderma reesei secretome. Journal of Proteomics 83, 180–196.AdavS.S.ChaoL.T.SzeS.K.Protein abundance in multiplexed samples (PAMUS) for quantitation of Trichoderma reesei secretomeJournal of Proteomics20138318019610.1016/j.jprot.2013.03.023Search in Google Scholar

Agger, J.W. et al. (2014): Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proceedings of the National Academy of Sciences of the United States of America 111, 6287–6292.AggerJ.W.et al.Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradationProceedings of the National Academy of Sciences of the United States of America20141116287629210.1073/pnas.1323629111Search in Google Scholar

Ander, P. et al. (1990): Redox reactions in lignin degradation: interactions between laccase, different peroxidases and cellobiose: quinone oxidoreductase. Journal of Biotechnology 13, 189–198.AnderP.et al.Redox reactions in lignin degradation: Interactions between laccase, different peroxidases and cellobiose: Quinone oxidoreductaseJournal of Bio-Technology19901318919810.1016/0168-1656(90)90104-JSearch in Google Scholar

Arantes, V. et al. (2012): Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Applied Microbiology and Biotechnology 94, 323–338.ArantesV.et al.Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomassApplied Microbiology and Biotechnology20129432333810.1007/s00253-012-3954-ySearch in Google Scholar

Ayers, A.R., Ayers, S.B. and K.-E. Eriksson (1978): Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. European Journal of Biochemistry 90, 171–181.AyersA.R.AyersS.B.ErikssonK.-E.Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentumEuropean Journal of Biochemistry19789017118110.1111/j.1432-1033.1978.tb12588.xSearch in Google Scholar

Baldrian, P. and V. Valášková (2008): Degradation of cellulose by basidiomycetous fungi. FEMS Microbiology Reviews 32, 501–521.BaldrianP.ValáškováV.Degradation of cellulose by basidiomycetous fungiFEMS Microbiology Reviews20083250152110.1111/j.1574-6976.2008.00106.xSearch in Google Scholar

Baminger, U. et al. (2001): Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii. Applied and Environmental Microbiology 67, 1766–1774.BamingerU.et al.Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsiiApplied and Environmental Microbiology2001671766177410.1128/AEM.67.4.1766-1774.2001Search in Google Scholar

Bao, W.J., Usha, S.N. and V. Renganathan (1993): Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics 300, 705–713.BaoW.J.UshaS.N.RenganathanV.Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporiumArchives of Biochemistry and Biophysics199330070571310.1006/abbi.1993.1098Search in Google Scholar

Bao, W. and V. Renganathan (1992): Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Letters 302, 77–80.BaoW.RenganathanV.Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulasesFEBS Letters1992302778010.1016/0014-5793(92)80289-SSearch in Google Scholar

Beeson, W.T. et al. (2015): Cellulose degradation by polysaccharide monooxygenases. Annual Review of Biochemistry 84, 923–946.BeesonW.T.et al.Cellulose degradation by polysaccharide monooxygenasesAnnual Review of Biochemistry20158492394610.1146/annurev-biochem-060614-03443925784051Search in Google Scholar

Beeson, W.T. et al. (2012): Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. Journal of the American Chemical Society 134, 890–892.BeesonW.T.et al.Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenasesJournal of the American Chemical Society201213489089210.1021/ja210657tSearch in Google Scholar

Bennati-Granier, C. et al. (2015): Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnology for Biofuels 8, 90.Bennati-GranierC.et al.Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserinaBiotechnology for Biofuels201589010.1186/s13068-015-0274-3Search in Google Scholar

Bey, M. et al. (2013): Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases(family GH61) from Podospora anserina. Applied and Environmental Microbiology 79, 488–496.BeyM.et al.Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (Family GH61) from Podospora anserinaApplied and Environmental Microbiology20137948849610.1128/AEM.02942-12Search in Google Scholar

Cameron, M.D. and S.D. Aust (2001): Cellobiose dehydrogenase–an extracellular fungal flavocytochrome. Enzyme and Microbial Technology 28, 129–138.CameronM.D.AustS.D.Cellobiose dehydrogenase–an extracellular fungal flavocytochromeEnzyme and Microbial Technology20012812913810.1016/S0141-0229(00)00307-0Search in Google Scholar

Canam, T. et al. (2011): Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw. Bioresource Technology 102, 10020–10027.CanamT.et al.Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola strawBioresource Technology2011102100201002710.1016/j.biortech.2011.08.045Search in Google Scholar

Couturier, M. et al. (2015): Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus. Biotechnology for Biofuels 8, 216.CouturierM.et al.Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineusBiotechnology for Biofuels2015821610.1186/s13068-015-0407-8Search in Google Scholar

Couturier, M. et al. (2012): Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics 13, 57.CouturierM.et al.Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydisBMC Genomics2012135710.1186/1471-2164-13-57Search in Google Scholar

Cox, M.C. et al. (1992): Spectroscopic identification of the haem ligands of cellobiose oxidase. FEBS Letters 307, 233–236.CoxM.C.et al.Spectroscopic identification of the haem ligands of cellobiose oxidaseFEBS Letters199230723323610.1016/0014-5793(92)80774-BSearch in Google Scholar

Cragg, S.M. et al. (2015): Lignocellulose degradation mechanisms across the tree of life. Current Opinion in Chemical Biology 29, 108–119.CraggS.M.et al.Lignocellulose degradation mechanisms across the tree of lifeCurrent Opinion in Chemical Biology20152910811910.1016/j.cbpa.2015.10.018757185326583519Search in Google Scholar

Desriani, S.F. and K. Sode (2010): Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase. Biochemical and Biophysical Research Communications 391, 1246–1250.DesrianiS.F.SodeK.Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenaseBiochemical and Biophysical Research Communications20103911246125010.1016/j.bbrc.2009.12.05220120044Search in Google Scholar

Dimarogona, M. et al. (2012): Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresource Technology 110, 480–487.DimarogonaM.et al.Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophileBioresource Technology201211048048710.1016/j.biortech.2012.01.116Search in Google Scholar

Dumonceaux, T. et al. (2001): Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme and Microbial Technology 29, 478–489.DumonceauxT.et al.Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolorEnzyme and Microbial Technology20012947848910.1016/S0141-0229(01)00407-0Search in Google Scholar

Eibinger, M. et al. (2014): Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. The Journal of Biological Chemistry 289, 35929–35938.EibingerM.et al.Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiencyThe Journal of Biological Chemistry2014289359293593810.1074/jbc.M114.602227427686125361767Search in Google Scholar

Escobar-Tovar, L. et al. (2015): Comparative analysis of the in vitro and in planta secretomes from Mycosphaerella fijiensis isolates. Fungal Biology 119, 447–470.Escobar-TovarL.et al.Comparative analysis of the in vitro and in planta secretomes from Mycosphaerella fijiensis isolatesFungal Biology201511944747010.1016/j.funbio.2015.01.00225986542Search in Google Scholar

Espino, J.J. et al. (2010): The Botrytis cinerea early secretome. Proteomics 10, 3020–3034.EspinoJ.J.et al.The Botrytis cinerea early secretomeProteomics2010103020303410.1002/pmic.201000037398378220564262Search in Google Scholar

Esposito, D. and M. Antonietti (2015): Redefining biorefinery: the search for unconventional building blocks for materials. Chemical Society Reviews 44, 5821–5835.EspositoD.AntoniettiM.Redefining biorefinery: The search for unconventional building blocks for materialsChemical Society Reviews2015445821583510.1039/C4CS00368C25907306Search in Google Scholar

Fang, J., Liu, W. and P.J. Gao (1998): Cellobiose dehydrogenase from Schizophyllum commune: purification and study of some catalytic, inactivation, and cellulose-binding properties. Archives of Biochemistry and Biophysics 353, 37–46.FangJ.LiuW.GaoP.J.Cellobiose dehydrogenase from Schizophyllum commune: Purification and study of some catalytic, inactivation, and cellulose-binding propertiesArchives of Biochemistry and Biophysics1998353374610.1006/abbi.1998.06029578598Search in Google Scholar

Floudas, D. et al. (2012): The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719.FloudasD.et al.The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomesScience20123361715171910.1126/science.122174822745431Search in Google Scholar

Frommhagen, M. et al. (2015): Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnology for Biofuels 8, 101.FrommhagenM.et al.Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenaseBiotechnology for Biofuels2015810110.1186/s13068-015-0284-1450445226185526Search in Google Scholar

Ganner, T. et al. (2012): Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases. The Journal of Biological Chemistry 287, 43215–43222.GannerT.et al.Dissecting and reconstructing synergism: In situ visualization of cooperativity among cellulasesThe Journal of Biological Chemistry2012287432154322210.1074/jbc.M112.419952352790923118223Search in Google Scholar

Hallberg, B.M. et al. (2000): A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure 8, 79–88.HallbergB.M.et al.A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenaseStructure20008798810.1016/S0969-2126(00)00082-4Search in Google Scholar

Hallberg, B. et al. (2002): Crystal structure of the flavo-protein domain of the extracellular flavocytochrome cellobiose dehydrogenase. Journal of Molecular Biology 315, 421–434.HallbergB.et al.Crystal structure of the flavo-protein domain of the extracellular flavocytochrome cellobiose dehydrogenaseJournal of Molecular Biology200231542143410.1006/jmbi.2001.524611786022Search in Google Scholar

Hallberg, B.M. et al. (2003): Mechanism of the reductive half-reaction in cellobiose dehydrogenase. Journal of Biological Chemistry 278, 7160–7166.HallbergB.M.et al.Mechanism of the reductive half-reaction in cellobiose dehydrogenaseJournal of Biological Chemistry20032787160716610.1074/jbc.M21096120012493734Search in Google Scholar

Harreither, W. et al. (2011): Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes. Applied and Environmental Microbiology 77, 1804–1815.HarreitherW.et al.Catalytic properties and classification of cellobiose dehydrogenases from ascomycetesApplied and Environmental Microbiology2011771804181510.1128/AEM.02052-10306729121216904Search in Google Scholar

Harreither, W. et al. (2009): Cellobiose dehydrogenase from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Applied and Environmental Microbiology 75, 2750–2757.HarreitherW.et al.Cellobiose dehydrogenase from the ligninolytic basidiomycete Ceriporiopsis subvermisporaApplied and Environmental Microbiology2009752750275710.1128/AEM.02320-08268171619270118Search in Google Scholar

Harreither, W. et al. (2012a): Investigation of the pH-dependent electron transfer mechanism of ascomycetous class II cellobiose dehydrogenases on electrodes. Langmuir 28, 6714–6723.HarreitherW.et al.Investigation of the pH-dependent electron transfer mechanism of ascomycetous class II cellobiose dehydrogenases on electrodesLangmuir2012a286714672310.1021/la300548622471986Search in Google Scholar

Harreither, W. et al. (2012b): Recombinantly produced cellobiose dehydrogenase from Corynascus thermophilus for glucose biosensors and biofuel cells. Biotechnology Journal 7, 1359–1366.HarreitherW.et al.Recombinantly produced cellobiose dehydrogenase from Corynascus thermophilus for glucose biosensors and biofuel cellsBiotechnology Journal2012b71359136610.1002/biot.20120004922815189Search in Google Scholar

Harris, P.V. et al. (2011): Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry 49, 3305–3316.HarrisP.V.et al.Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a largeEnigmatic Family. Biochemistry2011493305331610.1021/bi100009p20230050Search in Google Scholar

Henrich, E. et al. (2015): The role of biomass in a future world without fossil fuels. Chemie Ingenieur Technik 87, 1667–1685.HenrichE.et al.The role of biomass in a future world without fossil fuelsChemie Ingenieur Technik2015871667168510.1002/cite.201500056Search in Google Scholar

Henriksson, G. et al. (1991): Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains. European Journal of Biochemistry 196, 101–106.HenrikssonG.et al.Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domainsEuropean Journal of Biochemistry199119610110610.1111/j.1432-1033.1991.tb15791.x2001691Search in Google Scholar

Henriksson, G. et al. (1995): Cellobiosedehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Applied Microbiology and Biotechnology 42, 790–796.HenrikssonG.et al.Cellobiosedehydrogenase (Cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic ligninApplied Microbiology and Bio-Technology19954279079610.1007/BF00171963Search in Google Scholar

Henriksson, G. et al. (1998): Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1383, 48–54.HenrikssonG.et al.Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporiumBiochimica Et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology19981383485410.1016/S0167-4838(97)00180-5Search in Google Scholar

Henriksson, G., Johansson, G. and G. Pettersson (2000): A critical review of cellobiose dehydrogenases. Journal of Biotechnology 78, 93–113.HenrikssonG.JohanssonG.PetterssonG.A critical review of cellobiose dehydrogenasesJournal of Biotechnology2000789311310.1016/S0168-1656(00)00206-6Search in Google Scholar

Henriksson, G., Johansson, G. and G. Pettersson (1993): Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase? Biochimica et Biophysica Acta (BBA) - Bioenergetics 1144, 184–190.HenrikssonG.JohanssonG.PetterssonG.Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase?Biochimica Et Biophysica Acta (BBA) - Bioenergetics1993114418419010.1016/0005-2728(93)90171-BSearch in Google Scholar

Henrissat, B. (1991): A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 280, 309–316.HenrissatB.A classification of glycosyl hydrolases based on amino acid sequence similaritiesBiochemical Journal199128030931610.1042/bj280030911305471747104Search in Google Scholar

Hibbett, D.S. and J.W. Taylor (2013): Fungal systematics: is a new age of enlightenment at hand? Nature Reviews Microbiology 11, 129–133.HibbettD.S.TaylorJ.W.Fungal systematics: Is a new age of enlightenment at hand?Nature Reviews Microbiology20131112913310.1038/nrmicro296323288349Search in Google Scholar

Hoekstra, A.Y. and T.O. Wiedmann (2014): Humanity’s unsustainable environmental footprint. Science 344, 1114–1117.HoekstraA.Y.WiedmannT.O.Humanity’s unsustainable environmental footprintScience20143441114111710.1126/science.124836524904155Search in Google Scholar

Hori, C. et al. (2013): Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Mycologia 105, 1412–1427.HoriC.et al.Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decayMycologia20131051412142710.3852/13-07223935027Search in Google Scholar

Hori, C. et al. (2014): Temporal alterations in the secretome of the selective ligninolytic fungus Ceriporiopsis subvermispora during growth on aspen wood reveal this organism’s strategy for degrading lignocellulose. Applied and Environmental Microbiology 80, 2062–2070.HoriC.et al.Temporal alterations in the secretome of the selective ligninolytic fungus Ceriporiopsis subvermispora during growth on aspen wood reveal this organism’s strategy for degrading lignocelluloseApplied and Environmental Microbiology2014802062207010.1128/AEM.03652-13399313024441164Search in Google Scholar

Hori, C. et al. (2012): Transcriptional response of the cellobiose dehydrogenase gene to cello- and xylooligosaccharides in the basidiomycete Phanerochaete chrysosporium. Applied and Environmental Microbiology 78, 3770–3773.HoriC.et al.Transcriptional response of the cellobiose dehydrogenase gene to cello- and xylooligosaccharides in the basidiomycete Phanerochaete chrysosporiumApplied and Environmental Microbiology2012783770377310.1128/AEM.00150-12334637022407682Search in Google Scholar

Horn, S.J. et al. (2012): Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels 5, 45.HornS.J.et al.Novel enzymes for the degradation of celluloseBiotechnology for Biofuels201254510.1186/1754-6834-5-45349209622747961Search in Google Scholar

Igarashi, K. et al. (1999): Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition. European Journal of Biochemistry 253, 101–106.IgarashiK.et al.Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibitionEuropean Journal of Biochemistry199925310110610.1046/j.1432-1327.1998.2530101.x9578466Search in Google Scholar

Igarashi, K. et al. (1999): Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens: a flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor. Journal of Biological Chemistry 274, 3338–3344.IgarashiK.et al.Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens: A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactorJournal of Biological Chemistry19992743338334410.1074/jbc.274.6.33389920875Search in Google Scholar

Igarashi, K. et al. (2005): Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium. FEBS Journal 272, 2869–2877.IgarashiK.et al.Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporiumFEBS Journal20052722869287710.1111/j.1742-4658.2005.04707.x15943818Search in Google Scholar

Igarashi, K. et al. (2002): Kinetics of inter-domain electron transfer in flavocytochrome cellobiose dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. Biochemical Journal 365, 521–526.IgarashiK.et al.Kinetics of inter-domain electron transfer in flavocytochrome cellobiose dehydrogenase from the white-rot fungus Phanerochaete chrysosporiumBiochemical Journal200236552152610.1042/bj20011809122268711939907Search in Google Scholar

Isaksen, T. et al. (2014): A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cellooligosaccharides. Journal of Biological Chemistry 289, 2632–2642.IsaksenT.et al.A C4-oxidizing lytic polysaccha-ride monooxygenase cleaving both cellulose and cellooligosaccharidesJournal of Biological Chemistry20142892632264210.1074/jbc.M113.530196390839724324265Search in Google Scholar

Jones, G.D. and M.T. Wilson (1988): Rapid kinetic studies of the reduction of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum by cellobiose. Biochemical Journal 256, 713–718.JonesG.D.WilsonM.T.Rapid kinetic studies of the reduction of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum by cellobioseBiochemical Journal198825671371810.1042/bj256071311354743223948Search in Google Scholar

Jordan, D.B. et al. (2012): Plant cell walls to ethanol. Biochemical Journal 442, 241–252.JordanD.B.et al.Plant cell walls to ethanolBiochemical Journal201244224125210.1042/BJ2011192222329798Search in Google Scholar

Kadek, A. et al. (2015): Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase. FEBS Letters 589, 1194–1199.KadekA.et al.Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenaseFEBS Letters20155891194119910.1016/j.febslet.2015.03.02925862501Search in Google Scholar

Karapetyan, K.N. et al. (2006): Properties of neutral cellobiose dehydrogenase from the ascomycete Chaetomium sp. INBI 2-26(–) and comparison with basidiomycetous cellobiose dehydrogenases. Journal of Biotechnology 121, 34–48.KarapetyanK.N.et al.Properties of neutral cellobiose dehydrogenase from the ascomycete Chaetomium sp. INBI 2-26(–) and comparison with basidiomycetous cellobiose dehydrogenasesJournal of Biotechnology2006121344810.1016/j.jbiotec.2005.06.02416112765Search in Google Scholar

Kim, S. et al. (2013): Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proceedings of the National Academy of Sciences 111, 149–154.KimS.et al.Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanismProceedings of the National Academy of Sciences201311114915410.1073/pnas.1316609111389086824344312Search in Google Scholar

Kittl, R. et al. (2012): Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnology for Biofuels 5, 79.KittlR.et al.Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assayBiotechnology for Biofuels201257910.1186/1754-6834-5-79350026923102010Search in Google Scholar

Kleingardner, J.G. and K.L. Bren (2015): Biological significance and applications of heme c proteins and peptides. Accounts of Chemical Research 48, 1845–1852.KleingardnerJ.G.BrenK.L.Biological significance and applications of heme c proteins and peptidesAccounts of Chemical Research2015481845185210.1021/acs.accounts.5b0010626083801Search in Google Scholar

Klemm, D. et al. (2005): Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition 44, 3358–3393.KlemmD.et al.Cellulose: Fascinating biopolymer and sustainable raw materialAngewandte Chemie International Edition2005443358339310.1002/anie.20046058715861454Search in Google Scholar

Kracher, D. et al. (2015): Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations. FEBS Journal 282, 3136–3148.KracherD.et al.Inter-domain electron transfer in cellobiose dehydrogenase: Modulation by pH and diva-lent cationsFEBS Journal20152823136314810.1111/febs.13310467692525913436Search in Google Scholar

Kremer, S.M. and P.M. Wood (1992a): Cellobiose oxidase from Phanerochaete chrysosporium as a source of Fenton’s reagent. Biochemical Society Transactions 20, 110.KremerS.M.WoodP.M.Cellobiose oxidase from Phanerochaete chrysosporium as a source of Fenton’s reagentBiochemical Society Transactions1992a2011010.1042/bst020110s1327893Search in Google Scholar

Kremer, S.M. and P.M. Wood (1992b): Continuous monitoring of cellulose oxidation by cellobiose oxidase from Phanerochaete chrysosporium. FEMS Microbiology Letters 92, 187–192.KremerS.M.WoodP.M.Continuous monitoring of cellulose oxidation by cellobiose oxidase from Phanerochaete chrysosporiumFEMS Microbiology Letters1992b9218719210.1111/j.1574-6968.1992.tb05257.xSearch in Google Scholar

Kremer, S.M. and P.M. Wood (1992c): Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. European Journal of Biochemistry 205, 133–138.KremerS.M.WoodP.M.Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductaseEuropean Journal of Biochemistry1992c20513313810.1111/j.1432-1033.1992.tb16760.x1555575Search in Google Scholar

Langston, J.A. et al. (2012): Cloning, expression, and characterization of a cellobiose dehydrogenase from Thielavia terrestris induced under cellulose growth conditions. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1824, 802–812.LangstonJ.A.et al.Cloning, expression, and characterization of a cellobiose dehydrogenase from Thielavia terrestris induced under cellulose growth conditionsBiochimica Et Biophysica Acta (BBA) - Proteins and Proteomics2012182480281210.1016/j.bbapap.2012.03.00922484439Search in Google Scholar

Langston, J.A. et al. (2011): Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Applied and Environmental Microbiology 77, 7007–7015.LangstonJ.A.et al.Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61Applied and Environmental Microbiology2011777007701510.1128/AEM.05815-11318711821821740Search in Google Scholar

Lehner, D. et al. (1996): Small-angle X-ray scattering studies on cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1293, 161–169.LehnerD.et al.Small-angle X-ray scattering studies on cellobiose dehydrogenase from Phanerochaete chrysosporiumBiochimica Et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology1996129316116910.1016/0167-4838(95)00245-6Search in Google Scholar

Levasseur, A. et al. (2013): Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnology for Biofuels 6, 41.LevasseurA.et al.Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymesBiotechnology for Biofuels201364110.1186/1754-6834-6-41Search in Google Scholar

Li, X. et al. (2012): Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20, 1051–1061.LiX.et al.Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenasesStructure2012201051106110.1016/j.str.2012.04.002Search in Google Scholar

Ludwig, R. et al. (2003): Characterisation of cellobiose dehydrogenases from the white-rot fungi Trametes pubescens and Trametes villosa. Applied Microbiology and Biotechnology 64, 213–222.LudwigR.et al.Characterisation of cellobiose dehydrogenases from the white-rot fungi Trametes pubescens and Trametes villosaApplied Microbiology and Biotechnology20036421322210.1007/s00253-003-1501-6Search in Google Scholar

Ludwig, R. and D. Haltrich (2003): Optimisation of cellobiose dehydrogenase production by the fungus Sclerotium (Athelia) rolfsii. Applied Microbiology and Biotechnology 61, 32–39.LudwigR.HaltrichD.Optimisation of cellobiose dehydrogenase production by the fungus Sclerotium (Athelia) rolfsiiApplied Microbiology and Biotechnology200361323910.1007/s00253-002-1209-zSearch in Google Scholar

Mason, M.G., Nicholls, P. and M.T. Wilson (2003): Rotting by radicals – the role of cellobiose oxidoreductase? Biochemical Society Transactions 31, 1335–1336.MasonM.G.NichollsP.WilsonM.T.Rotting by radicals – the role of cellobiose oxidoreductase?Biochemical Society Transactions2003311335133610.1042/bst0311335Search in Google Scholar

Mathews, F.S., Bethge, P.H. and E.W. Czerwinski (1979): The structure of cytochrome b562 from Escherichia coli at 2.5 Å resolution. The Journal of Biological Chemistry 254, 1699–1706.MathewsF.S.BethgeP.H.CzerwinskiE.W.The structure of cytochrome b562 from Escherichia coli at 2.5 Å resolutionThe Journal of Biological Chemistry19792541699170610.1016/S0021-9258(17)37829-8Search in Google Scholar

Matsumura, H. et al. (2014): Discovery of a eukaryotic pyrroloquinoline quinone-dependent oxidoreductase belonging to a new auxiliary activity family in the database of carbohydrate-active enzymes. PloS One 9, e104851.MatsumuraH.et al.Discovery of a eukaryotic pyrroloquinoline quinone-dependent oxidoreductase belonging to a new auxiliary activity family in the database of carbohydrate-active enzymesPlos One2014e104851910.1371/journal.pone.0104851413326225121592Search in Google Scholar

Morpeth, F.F. (1985): Some properties of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum. Biochemical Journal 228, 557–564.MorpethF.F.Some properties of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentumBiochemical Journal198522855756410.1042/bj228055711450232992449Search in Google Scholar

Nakagame, S., Furujyo, A. and J. Sugiura (2006): Purification and characterization of cellobiose dehydrogenase from white-rot basidiomycete Trametes hirsuta. Bioscience, Biotechnology, and Biochemistry 70, 1629–1635.NakagameS.FurujyoA.SugiuraJ.Purification and characterization of cellobiose dehydrogenase from white-rot basidiomycete Trametes hirsuta. BioscienceBiotechnology, and Biochemistry2006701629163510.1271/bbb.5069216861797Search in Google Scholar

Payne, C.M. et al. (2015): Fungal cellulases. Chemical Reviews 115, 1308–1448.PayneC.M.et al.Fungal cellulasesChemical Reviews20151151308144810.1021/cr500351c25629559Search in Google Scholar

Phillips, C.M., Iavarone, A.T. and M.A. Marletta (2011a): Quantitative proteomic approach for cellulose degradation by Neurospora crassa. Journal of Proteome Research 10, 4177–4185.PhillipsC.M.IavaroneA.T.MarlettaM.A.Quantitative proteomic approach for cellulose degradation by Neurospora crassaJournal of Proteome Research2011a104177418510.1021/pr200329b21744778Search in Google Scholar

Phillips, C.M. et al. (2011b): Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chemical Biology 6, 1399–1406.PhillipsC.M.et al.Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassaACS Chemical Biology2011b61399140610.1021/cb200351y22004347Search in Google Scholar

Pollegioni, L., Tonin, F. and E. Rosini (2015): Lignin-degrading enzymes. FEBS Journal 282, 1190–1213.PollegioniL.ToninF.RosiniE.Lignin-degrading enzymesFEBS Journal20152821190121310.1111/febs.1322425649492Search in Google Scholar

Pricelius, S. et al. (2010): In situ generation of hydrogen peroxide by carbohydrate oxidase and cellobiose dehydrogenase for bleaching purposes. Biotechnology Journal 6, 224–230.PriceliusS.et al.In situ generation of hydrogen peroxide by carbohydrate oxidase and cellobiose dehydrogenase for bleaching purposesBiotechnology Journal2010622423010.1002/biot.20100024621298807Search in Google Scholar

Quinlan, R.J. et al. (2011): Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proceedings of the National Academy of Sciences of the United States of America 108, 15079–15084.QuinlanR.J.et al.Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass componentsProceedings of the National Academy of Sciences of the United States of America2011108150791508410.1073/pnas.1105776108317464021876164Search in Google Scholar

Rogers, M.S. et al. (1994): Electron transfer from Phanerochaete chrysosporium cellobiose oxidase to equine cytochrome c and Pseudomonas aeruginosa cytochrome c-551. Biochemical Journal 298, 329–334.RogersM.S.et al.Electron transfer from Phanerochaete chrysosporium cellobiose oxidase to equine cytochrome c and Pseudomonas aeruginosa cytochrome c-551Biochemical Journal199429832933410.1042/bj298032911379438135738Search in Google Scholar

Rogers, M.S., Jones, G.D. and M.T. Wilson (1992): Kinetics of the electron transfer reactions of cellobiose oxidase. Biochemical Society Transactions 20, 231S–231S.RogersM.S.JonesG.D.WilsonM.T.Kinetics of the electron transfer reactions of cellobiose oxidaseBiochemical Society Transactions199220231S231S10.1042/bst020231s1327914Search in Google Scholar

Rotsaert, F.A.J. et al. (2001): Site-directed mutagenesis of the heme axial ligands in the hemoflavoenzyme cellobiose dehydrogenase. Archives of Biochemistry and Biophysics 390, 206–214.RotsaertF.A.J.et al.Site-directed mutagenesis of the heme axial ligands in the hemoflavoenzyme cellobiose dehydrogenaseArchives of Biochemistry and Biophysics200139020621410.1006/abbi.2001.236211396923Search in Google Scholar

Rotsaert, F.A.J., Renganathan, V. and M.H. Gold (2003): Role of the flavin domain residues, His689 and Asn732, in the catalytic mechanism of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochemistry 42, 4049–4056.RotsaertF.A.J.RenganathanV.GoldM.H.Role of the flavin domain residues, His689 and Asn732, in the catalytic mechanism of cellobiose dehydrogenase from Phanerochaete chrysosporiumBiochemistry2003424049405610.1021/bi027092k12680758Search in Google Scholar

Roy, B.P. et al. (1994): Creation of metal-complexing agents, reduction of manganese dioxide and promotion of manganese peroxide mediated Mn(III) prodution by cellobiose:quinone oxidoreductase from Trametes versi-color. The Journal of Biological Chemistry 269, 19745– 19750.RoyB.P.et al.Creation of metal-complexing agents, reduction of manganese dioxide and promotion of manganese peroxide mediated Mn(III) prodution by cellobiose:quinone oxidoreductase from Trametes versi-colorThe Journal of Biological Chemistry199426910.1016/S0021-9258(17)32084-7Search in Google Scholar

Rytioja, J. et al. (2014): Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiology and Molecular Biology Reviews 78, 614–649.RytiojaJ.et al.Plant-polysaccharide-degrading enzymes from basidiomycetesMicrobiology and Molecular Biology Reviews20147861464910.1128/MMBR.00035-14Search in Google Scholar

Rzhetsky, A. and M. Nei (1992): A simple method for estimating and testing minimum-evolution trees. Molecular Biology and Evolution 9, 945.RzhetskyA.NeiM.A simple method for estimating and testing minimum-evolution treesMolecular Biology and Evolution19929945Search in Google Scholar

Sachslehner, A. et al. (1997): Production of hemicelluloseand cellulose-degrading enzymes by various strains of-Sclerotium rolfsii. Applied Biochemistry and Biotechnology 63-65, 189–201.SachslehnerA.et al.Production of hemicelluloseand cellulose-degrading enzymes by various strains of-Sclerotium rolfsiiApplied Biochemistry and Biotechnology199763-6518920110.1007/BF02920424Search in Google Scholar

Samejima, M., Phillips, R.S. and K.E. Eriksson (1992): Cellobiose oxidase from Phanerochaete chrysosporium. Stopped-flow spectrophotometric analysis of pH-dependent reduction. FEBS Letters 306, 165–168.SamejimaM.PhillipsR.S.ErikssonK.E.Cellobiose oxidase from Phanerochaete chrysosporium. Stopped-flow spectrophotometric analysis of pH-dependent reductionFEBS Letters199230616516810.1016/0014-5793(92)80991-OSearch in Google Scholar

Scharlemann, J.P. et al. (2014): Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management 5, 81–91.ScharlemannJ.P.et al.Global soil carbon: Understanding and managing the largest terrestrial carbon poolCarbon Management20145819110.4155/cmt.13.77Search in Google Scholar

Scheller, H.V. and P. Ulvskov (2010): Hemicelluloses. Annual Review of Plant Biology 61, 263–289.SchellerH.V.UlvskovP.Hemicelluloses. Annual Review of Plant Biology20106126328910.1146/annurev-arplant-042809-11231520192742Search in Google Scholar

Schmidhalter, D.R. and G. Canevascini (1993): Isolation and characterization of the cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana (Schum ex Fr.) Karst. Archives of Biochemistry and Biophysics 300, 559–563.SchmidhalterD.R.CanevasciniG.Isolation and characterization of the cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana (Schum ex Fr.) KarstArchives of Biochemistry and Biophysics199330055956310.1006/abbi.1993.10778434937Search in Google Scholar

Schou, C., Christensen, H.M. and M. Schülein (1998): Characterization of a cellobiose dehydrogenase from Humicola insolens. Biochemical Journal 330, 565–571.SchouC.ChristensenH.M.SchüleinM.Characterization of a cellobiose dehydrogenase from Humicola insolensBiochemical Journal199833056557110.1042/bj330056512191749461557Search in Google Scholar

Schulz, C. et al. (2012): Enhancement of enzymatic activity and catalytic current of cellobiose dehydrogenase by calcium ions. Electrochemistry Communications 17, 71–74.SchulzC.et al.Enhancement of enzymatic activity and catalytic current of cellobiose dehydrogenase by calcium ionsElectrochemistry Communications201217717410.1016/j.elecom.2012.01.031Search in Google Scholar

Stoica, L. et al. (2006): Direct electron transfer - afavorite electron route for cellobiose dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from Phanerochaete chrysosporium. Langmuir 22, 10801– 10806.StoicaL.et al.Direct electron transfer - afavorite electron route for cellobiose dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from Phanerochaete chrysosporiumLangmuir200622108011080610.1021/la061190f17129063Search in Google Scholar

Sulej, J. et al. (2015): Characterization of cellobiose dehydrogenasefrom a biotechnologically important Cerrena unicolor strain. Applied Biochemistry and Biotechnology 176, 1638–1658.SulejJ.et al.Characterization of cellobiose dehydrogenasefrom a biotechnologically important Cerrena unicolor strainApplied Biochemistry and Biotechnology20151761638165810.1007/s12010-015-1667-2451524826003328Search in Google Scholar

Sygmund, C. et al. (2012): Characterization of the two Neurospora crassacellobiose dehydrogenases and their connection to oxidative cellulose degradation. Applied and Environmental Microbiology 78, 6161–6171.SygmundC.et al.Characterization of the two Neurospora crassacellobiose dehydrogenases and their connection to oxidative cellulose degradationApplied and Environmental Microbiology2012786161617110.1128/AEM.01503-12341663222729546Search in Google Scholar

Sygmund, C. et al. (2013): Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production. Microbial Cell Factories 12, 38.SygmundC.et al.Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide productionMicrobial Cell Factories2013123810.1186/1475-2859-12-38365498823617537Search in Google Scholar

Takeda, K. et al. (2015): Characterization of a novel PQQ-dependent quinohemoprotein pyranose dehydrogenase from Coprinopsis cinerea classified into auxiliary activities family 12 in carbohydrate-active enzymes. PLoS ONE 10, e0115722.TakedaK.et al.Characterization of a novel PQQ-dependent quinohemoprotein pyranose dehydrogenase from Coprinopsis cinerea classified into auxiliary activities family 12 in carbohydrate-active enzymesPlos ONE2015e01157221010.1371/journal.pone.0115722433266825679509Search in Google Scholar

Tan, T.-C. et al. (2015): Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nature Communications 6, 7542.TanT.-C.et al.Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradationNature Communications20156754210.1038/ncomms8542450701126151670Search in Google Scholar

Tasca, F. et al. (2011): A third generation glucose biosensor based on cellobiose dehydrogenase from Corynascus thermophilus and single-walled carbon nanotubes. Analyst 136, 2033–2036.TascaF.et al.A third generation glucose biosensor based on cellobiose dehydrogenase from Corynascus thermophilus and single-walled carbon nanotubesAnalyst20111362033203610.1039/C0AN00311E20672160Search in Google Scholar

Turbe-Doan, A. et al. (2013): Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw. Applied Microbiology and Biotechnology 97, 4873–4885.Turbe-DoanA.et al.Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat strawApplied Microbiology and Biotechnology2013974873488510.1007/s00253-012-4355-y22940800Search in Google Scholar

Vanholme, R. et al. (2010): Lignin biosynthesis and structure. Plant Physiology 153, 895–905.VanholmeR.et al.Lignin biosynthesis and structurePlant Physiology201015389590510.1104/pp.110.155119289993820472751Search in Google Scholar

Vu, V.V. et al. (2014): A family of starch-active polysaccharide monooxygenases. Proceedings of the National Academy of Sciences of the United States of America 111, 13822–13827.VuV.V.et al.A family of starch-active polysaccharide monooxygenasesProceedings of the National Academy of Sciences of the United States of America2014111138221382710.1073/pnas.1408090111418331225201969Search in Google Scholar

Wang, B. et al. (2015): A transcriptomic analysis of Neurospora crassa using five major crop residues and the novel role of the sporulation regulator rca-1 in lignocellulase production. Biotechnology for Biofuels 8, 21.WangB.et al.A transcriptomic analysis of Neurospora crassa using five major crop residues and the novel role of the sporulation regulator rca-1 in lignocellulase productionBiotechnology for Biofuels201582110.1186/s13068-015-0208-0433064525691917Search in Google Scholar

Westereng, B. et al. (2015): Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Scientific Reports 5, 18561.WesterengB.et al.Enzymatic cellulose oxidation is linked to lignin by long-range electron transferScientific Reports201551856110.1038/srep18561468525726686263Search in Google Scholar

Westermark, U. and K.E. Eriksson (1974): Cellobiose:quinone oxidoreductase, a new wood-degrading enzyme from white-rot fungi. Acta Chemica Scandinavica 28b, 209–214.WestermarkU.ErikssonK.E.Cellobiose:Quinone oxidoreductase, a new wood-degrading enzyme from white-rot fungiActa Chemica Scandinavica197428b20921410.3891/acta.chem.scand.28b-0209Search in Google Scholar

Westermark, U. and K.E. Eriksson (1975): Purification and properties of cellobiose: quinone oxidoreductase from Sporotrichum pulverulentum. Acta Chemica Scandinavica. Series B: Organic Chemistry and Biochemistry 29, 419–424.WestermarkU.ErikssonK.E.Purification and properties of cellobiose: Quinone oxidoreductase from Sporotrichum pulverulentum. Acta Chemica Scan-dinavicaSeries B: Organic Chemistry and Biochemistry197529419424Search in Google Scholar

Willför, S. et al. (2005): Polysaccharides in some industrially important hardwood species. Wood Science and Technology 39, 601–617.WillförS.et al.Polysaccharides in some industrially important hardwood speciesWood Science and Technology20053960161710.1007/s00226-005-0039-4Search in Google Scholar

Wilson, M.T. and B.-L. Liu (1994): Electron transfer reactions of cellobiose oxidase. Biochemical Society Transactions 22, 725–728.WilsonM.T.LiuB.-L.Electron transfer reactions of cellobiose oxidaseBiochemical Society Transactions19942272572810.1042/bst02207257821673Search in Google Scholar

Wongnate, T. and P. Chaiyen (2013): The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose–methanol–choline superfamily. FEBS Journal 280, 3009–3027.WongnateT.ChaiyenP.The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose–methanol–choline superfamilyFEBS Journal20132803009302710.1111/febs.1228023578136Search in Google Scholar

Worrall, J.J., Anagnost, S.E. and R.A. Zabel (1997): Comparison of wood decay among diverse lignicolous Fungi. Mycologia 89, 199–219.WorrallJ.J.AnagnostS.E.ZabelR.A.Comparison of wood decay among diverse lignicolous FungiMycologia19978919921910.1080/00275514.1997.12026772Search in Google Scholar

Yoshida, M. et al. (2005): Characterization of carbohydrate-binding cytochrome b562 from the white-rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology 71, 4548–4555.YoshidaM.et al.Characterization of carbohydrate-binding cytochrome b562 from the white-rot fungus Phanerochaete chrysosporiumApplied and Environmental Microbiology2005714548455510.1128/AEM.71.8.4548-4555.2005118332116085848Search in Google Scholar

Zámocký, M. et al. (2008): Cloning, sequence analysis and heterologous expression in Pichia pastoris of a gene encoding a thermostable cellobiose dehydrogenase from Myriococcum thermophilum. Protein Expression and Purification 59, 258–265.ZámockýM.et al.Cloning, sequence analysis and heterologous expression in Pichia pastoris of a gene encoding a thermostable cellobiose dehydrogenase from Myriococcum thermophilumProtein Expression and Purification20085925826510.1016/j.pep.2008.02.00718374601Search in Google Scholar

Zámocký, M. et al. (2004): Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Gene 338, 1–14.ZámockýM.et al.Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungiGene200433811410.1016/j.gene.2004.04.02515302401Search in Google Scholar

Zámocký, M. et al. (2006): Cellobiose dehydrogenase–a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Current Protein & Peptide Science 7, 255–280.ZámockýM.et al.Cellobiose dehydrogenase–a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungiCurrent Protein & Peptide Science2006725528010.2174/13892030677745236716787264Search in Google Scholar

Zhang, R., Fan, Z. and T. Kasuga (2011): Expression of cellobiose dehydrogenase from Neurospora crassa in Pichia pastoris and its purification and characterization. Protein Expression and Purification 75, 63–69.ZhangR.FanZ.KasugaT.Expression of cellobiose dehydrogenase from Neurospora crassa in Pichia pastoris and its purification and characterizationProtein Expression and Purification201175636910.1016/j.pep.2010.08.00320709172Search in Google Scholar

eISSN:
0006-5471
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Ecology, other