1. bookVolume 17 (2017): Issue 3 (July 2017)
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
access type Open Access

Comparative response of IgA and IgG activity and hematological parameters among four main beef-cattle breeds infected with gastrointestinal nematodes in the warm humid tropic of Mexico

Published Online: 01 Aug 2017
Volume & Issue: Volume 17 (2017) - Issue 3 (July 2017)
Page range: 819 - 833
Received: 06 May 2016
Accepted: 09 Feb 2017
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

This study determined the immunoglobulin (A and G) activity against gastrointestinal nematodes (GIN) and also the hematological parameters in four beef-calf breeds naturally infected in a tropical region of Mexico. Thirty-six infected calves were used to determine the fecal nematode egg counts (FEC), the IgA and IgG activity in serum and saliva, the packed cell volume (PCV), the plasmatic protein (PP) and the differential leukocyte counts. These parameters were measured for a five-month period. ELISA assay was performed using adult worm crude antigen (AWCA) from Haemonchus contortus, Trichostrongylus colubriformis, Mecistocirrus digitatus and Cooperia punctata. The variables were analyzed using a fixed model according to the breed group. The FEC records (means ± standard deviation) for the different breeds were: Brangus (122±115), Charolais (391±507), Guzerat (294±326) and Brown Swiss (413±395). No statistical differences (P>0.05) were found among breeds. Cooperia and Haemonchus were the main identified genera in the coprocultures. Differences in hematological parameters were observed among breeds (P<0.01); Guzerat showed the highest PCV (42.6±4.7%). The lowest leukocyte counts were observed in the Charolais breed (9.2±2.4 × 109 cells L-1). Differences between Guzerat and Charolais were only detected in eosinophils, neutrophils and lymphocytes. Increased activity of IgA was observed against M. digitatus (21% OD) compared with the response against C. punctata in serum samples (13% OD). The lowest IgA activity in serum and saliva was found in Guzerat calves. Charolais and Brown Swiss showed the highest IgA activity in serum and the highest value in saliva was found in Brangus.


Alves- Júnior J.R.F., Marciano A.P.V., Bittar E.R., Paneto J.D.C., Martins- Filho O.A., Bittar J.F.F. (2009). Erythrocyte profile of Gir, Nellore and Guzera cattle (Bos taurus indicus, Linnaeus, 1758) in Uberaba-MG. PUBVET, 3 (22).Search in Google Scholar

Barrios M., Sandoval E., Camacaro O., Sánchez D., Domínguez L., Márquez O. (2011). Leucogramayperfil proteico en becerros mestizos doble propósito, resistentesysusceptibles a la infestación natural por nematodos gastrointestinales. Zoot. Trop., 29: 313-322.Search in Google Scholar

Bartley D.J., Mc Arthur C.L., Devin L.M., Sutra J.F., Morrison A.A., Lespine A., Matthews J.B. (2012). Characterisation of macrocyclic lactone resistance in two field-derived isolates of Cooperia oncophora. Vet. Parasitol., 190: 454-460.Search in Google Scholar

Bishop S.C. (2012). Possibilities to breed for resistance to nematode parasite infections in small ruminants in tropical production systems. Animal., 6: 741-747.Search in Google Scholar

Bowdridge S., Mac Kinnon K., Mc Cann J.C., Zajac A.M., Notter D.R. (2013). Hairtype sheep generate an accelerated and longer-lived humoral immune response to Haemonchus contortus infection. Vet. Parasitol., 196: 172-178.Search in Google Scholar

Bradford M. (1976). Arapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annal. Biochem., 72: 248-254.Search in Google Scholar

Bricarello P.A., Zaros K.G., Coutinho L.L., Rocha R.A., Kooyman E., De Vries E., Gonçalves J.R.S., Lima L.G., Pires A.V., Amarante A.F.T. (2007). Field study on nematode resistance in Nelore breed cattle. Vet. Parasitol., 148: 272-278.Search in Google Scholar

Brun - Hansen H.C., Kampen A.H., Lund A. (2006). Hematologic values in calves during the first 6 months of life. Vet. Clin. Pathol., 35: 182-187.Search in Google Scholar

Canul-Ku H.L., Rodríguez - Vivas R.I., Torres - Acosta J.F.J., Aguilar- Caballero A.J., Pérez- Cogollo L.C., Ojeda- Chi M.M. (2012). Prevalence of cattle herds with ivermectin resistant nematodes in the hot sub-humid tropics of Mexico. Vet. Parasitol., 183: 292-298.Search in Google Scholar

Cardoso C.P., Silva B.F., Trinca L.A., Amarante A.F. (2013). Resistance against gastrointestinal nematodes in Crioulo Lageano and crossbred Angus cattle in southern Brazil. Vet. Parasitol., 192: 183-191.Search in Google Scholar

Coles G.C., Bauer C., Borgsteede F.H.M., Geerts S., Klei T.R., Taylor M.A., Waller P.J. (1992). World Association for the Advancement of Veterinary Parasitology (WAAVP) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol., 44: 35-44.Search in Google Scholar

CONAGUA (2014). Servicio Meteorológico Nacional. México. Normales climatológicas. Available in: http://smn.cna.gob.mx/climatologia/normales/estacion/tab/NORMAL27068.TXT (Consulted 19 October 2015).Search in Google Scholar

Cuquerella M., Gómez- Muñoz M.T., Carrera L., De La Fuente C., Alunda J.M. (1994). Cross antigenicity among ovine trichostrongyloidea. Vet. Parasitol., 53: 243-251.Search in Google Scholar

Figueroa - Castillo J.A., Méndez - Medina R.D., Berruecos- Villalobos J.M., Gayosso- Vázquez A., Ulloa-Arvízu R., Acosta - Rodríguez R., Pérez-Ramírez H., Alonso - Morales R.A. (2011). Association between major histocompatibility complex microsatellites, fecal egg count, blood packed cell volume and blood eosinophilia in Pelibuey sheep infected with Haemonchus contortus. Vet. Parasitol., 177: 339-344.Search in Google Scholar

Gasbarre L.C. (2014). Anthelmintic resistance in cattle nematodes in the US. Vet. Parasitol., 204: 3-11.Search in Google Scholar

González- Garduño R., Navarro- Martínez F., Arias- Julián J., Gutiérrez - Cruz S., Vera M., Vera C. (2013). Descripción morfológica de Haemonchus contortusy Mecistocirrus digitatus de ovinosybovinos en Tabasco, México. Av. Cienc. Vet., 28: 76-85.Search in Google Scholar

Hou Y., Liu G.E., Bickhart D.M., Matukumalli L.K., Li C., Song J., Gasbarre L.C, Van Tasel C.P, Sonstegard T.S. (2012). Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle. Funct. Integr. Genomics, 12: 81-92.Search in Google Scholar

Idika I.K., Okonkwo E.A., Onah D.N., Ezeh O., Iheagwam C.N., Nwosu C.O. (2012). Efficacy of levamisole and ivermectin in the control of bovine parasitic gastroenteritis in the subhumid savanna zone of southeastern Nigeria. Parasitol. Res., 111: 1683-1687.Search in Google Scholar

Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. (2006). World Map of the Köppen- Geiger climate classification updated. Meteorol. Z., 15: 259-263.Search in Google Scholar

Lejeune A., Monahan F.J., Moloney A.P., Earley B., Black A.D., Campion D.P., Englishby T., Reilly P., O ' Doherty J., Sweeney T. (2010). Peripheral and gastrointestinal immune systems of healthy cattle raised outdoors at pasture or indoors onaconcentrate-based ration. BMC Vet. Res., 6: 19. doi: 10.1186/1746-6148-6-19.Search in Google Scholar

Lima W.S. (1998). Seasonal infection pattern of gastrointestinal nematodes of beef cattle in Minas Gerais State-Brazil. Vet. Parasitol., 74: 203-214.Search in Google Scholar

Macêdo A.A., Marciano A.P.V., Rocha L.M., Alves-Júnior J.R.F., Faria A.M.C., Bittar J.F.F., Araújo M.S.S., Santos R.L., Martins-Filho O.A. (2013). Comparative phenotypic profile of subpopulations of peripheral blood leukocytes in European (Bos taurus taurus) and Zebu cattle (Bos taurus indicus). Genet. Mol. Res., 12: 6838-6849.Search in Google Scholar

Martínez- Velázquez G., Bustamante Guerrero J.D.J., Palacios Fránquez J.A., Montaño Bermúdez M. (2006). Efectos racialesyheterosis materna Criollo-Guzerat para crecimiento posdesteteycaracteristicas de la canal. Técnica pecuaria en México, 44: 107-118.Search in Google Scholar

Morris C.A. (2007). Areview of genetic resistance to disease in Bos taurus cattle. The Vet. J., 174: 481-491.Search in Google Scholar

Oliveira M.C.S., Alencar M.M., Chagas A.C., Giglioti R., Oliveira H.N. (2009). Gastrointestinal nematode infection in beef cattle of different genetic groups in Brazil. Vet. Parasitol., 166: 249-254.Search in Google Scholar

Oliveira M.C.S., Alencar M.M., Giglioti R., Beraldo M.C.D., Aníbal F.F., Correia R.O., Boschini L., Chagas A.C.S., Bilhassi T.B., Oliveira H.N. (2013). Resistance of beef cattle of two genetic groups to ectoparasites and gastrointestinal nematodes in the state of São Paulo, Brazil. Vet. Parasitol., 197: 168-175.Search in Google Scholar

Peña M.T., Miller J.E., Wyatt W., Kearney M.T. (2000). Differences in susceptibility to gastrointestinal nematode infection between Angus and Brangus cattle in south Louisiana. Vet. Parasitol., 89: 51-61.Search in Google Scholar

Pisseri F.,de Benedictis C., Robertidi Sarsina P., Azzarello B. (2013). Sustainable animal production, systemic prevention strategies in parasitic diseases of ruminants. Altern. Integ. Med., 2: 2-7.Search in Google Scholar

Prada- Jiménezde C.J., Matthews L., Mair C., Stefan T., Stear M.J. (2014). The transfer of Ig Afrom mucus to plasma and the implications for diagnosis and control of nematode infections. Parasitol., 141: 875-879.Search in Google Scholar

Quijada J., García F., Vivas I., Simoes D., Rondón Z. (2006). Prevalencia de infecciones por estróngilos digestivos en un rebaño ovino del estado Aragua en la época de lluvia. Rev. Científica, 16: 341-346.Search in Google Scholar

Ramírez- Restrepo C.A., Pernthaner A., Barry T.N., López- Villalobos N., Shaw R.J., Pomroy W.E., Hein W.R. (2010). Characterization of immune responses against gastrointestinal nematodes in weaned lambs grazing willow fodder blocks. Anim. Feed Sci. Technol., 155: 99-110.Search in Google Scholar

Rinaldi M., Geldhof P. (2012). Immunologically based control strategies for ostertagiosis in cattle: where do we stand? Parasite Immunol., 34: 254-264.Search in Google Scholar

Rosse I.C., Assis J.G., Oliveira F.S., Leite L.R., Araujo F., Zerlotini A., Volpini A., Dominitini A.J., Lopes B.C., Arbex W.A., Machado M.A., Peixoto M.G.C.D., Verneque R.S., Martins M.F., Coimbra R.S., Silva M.V.G.B., Oliveira G., Carvalho M.R.S. (2017). Whole genome sequencing of Guzerá cattle reveals genetic variants in candidate genes for production, disease resistance, and heat tolerance. Mamm. Genome, 28: 66-80.Search in Google Scholar

SAS Institute Inc. SAS/STAT® User’s Guide, Version 9.2, Cary, NC: SAS Institute Inc. 2008.Search in Google Scholar

Sattar A., Mirza R.H. (2009). Haematological parameters in exotic cows during gestation and lactation under subtropical conditions. Pakistan Vet. J., 29: 129-132.Search in Google Scholar

Shaw R.J., Morris C.A., Wheeler M., Tate M., Sutherland I.A. (2012). Salivary Ig A: a suitable measure of immunity to gastrointestinal nematodes in sheep. Vet. Parasitol., 186: 109-117.Search in Google Scholar

Sinski E., Bairden K., Duncan J.L., Eisler M.C., Holmes P.H., Mckellar Q.A., Murray M., Stear M.J. (1995). Local and plasma antibody responses to the parasitic larval stages of the abomasal nematode Ostertagia circumcincta. Vet. Parasitol., 59: 107-118.Search in Google Scholar

Stear M.J., Bishop S.C., Henderson N.G., Scott I. (2003). Akey mechanism of pathogenesis in sheep infected with the nematode Teladorsagia circumcincta. Animal Health Res. Rev., 4: 45-52.Search in Google Scholar

Stromberg B.E., Gasbarre L.C., Waite A., Bechtol D.T., Brown M.S., Robinson N.A., Olson E.J., Newcomb H. (2012). Cooperia punctata: Effect on cattle productivity? Vet. Parasitol., 183: 284-291.Search in Google Scholar

Sutherland I.A., Leathwick D.M. (2011). Anthelmintic resistance in nematode parasites of cattle:aglobal issue? Trends in Parasitol., 27: 176-181.Search in Google Scholar

Thienpont D., Rochette F., Vanparijs O.F.J. (1986). Diagnóstico de las helmintiasis por medio del examen coprológico. Janssen Research Foundation, 258 pp.Search in Google Scholar

Umpapol H., Jitrajak T., Songvicha C., Tantisirin P., Hanmontree R., Sripandon J., Umpapol S. (2014). Response on general physiology, animal welfare behavior and productivity of the different lineage level of Charolais crossbred cattle for fattening beef cattle production performance in Thailand. Pakistan J. Nut., 13: 648-652.Search in Google Scholar

Van Wyk J.A., Mayhew E. (2013). Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: Apractical lab guide. The Onderstepoort J. Vet. Res., 80: E1-E14.Search in Google Scholar

Van Wyk I.C., Goddard A., Bronsvoort B.D.C., Coetzer J.A., Booth C., Hanotte O., Jennings A., Kiara H., Mashego P., Muller C., Pretorius G., Poole E.J., Thumbi S.M., Toye P.G., Woolhouse M.E.J., Penzhorn B.L. (2013). Hematological profile of East African short-horn zebu calves from birth to 51 weeks of age. Comparative Clinical Pathol., 22: 1029-1036.Search in Google Scholar

von Son-de Fernex E., Alonso - Díaz M.Á., Mendoza-de - Gives P., Valles -de la Mora B., Liébano - Hernández E., López- Arellano M.E., Aguilar- Marcelino L. (2014). Reappearance of Mecistocirrus digitatus in cattle from the Mexican tropics: prevalence, molecular, and scanning electron microscopy identification. J. Parasitol., 100: 296-301.Search in Google Scholar

William A.R., Palmer D.G., Williams I.H., Vercoe P.E., Karlsson L.J.E. (2010). Faecal dry matter, inflammatory cells and antibodies in parasite-resistant sheep challenged with either Trichostrongylus colubriformis or Teladorsagia circumcincta. Vet. Parasitol., 170: 230-237.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo