1. bookVolume 17 (2017): Issue 1 (January 2017)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Effects of Galactooligosaccharide and Pediococcus Acidilactici on Antioxidant Defence and Disease Resistance of Rainbow Trout, Oncorhynchus Mykiss

Published Online: 08 Feb 2017
Volume & Issue: Volume 17 (2017) - Issue 1 (January 2017)
Page range: 217 - 227
Received: 10 Nov 2015
Accepted: 23 Mar 2016
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The present study investigated the effects of dietary prebiotic galactooligosaccharide [(GOS), 1%], probiotic (Pediococcus acidilactici) [7.57 log CFU g-1] and synbiotic (GOS + P. acidilactici) on antioxidant enzymes activity and disease resistance of rainbow trout (15.04±0.52 g). After 8 weeks feeding on the experimental diets, liver catalase (CAT ), glutathione S-transferases (GST), glutathione reductase (GR) activities, and malondialdehyde (MDA) levels were measured. Thereafter, all fish were challenged by Streptococcus iniae. Probiotic, prebiotic and synbiotic had no significant effect on liver MDA level compared to the control group (P>0.05). However, CAT , GST and GR activities were significantly higher in the fish fed probiotic, prebiotic and synbiotic, compared to the control group (P<0.05). The highest CAT and GST activities were observed in the fish fed diet supplemented with synbiotic. There were no significant differences in GR activity among different groups (P>0.05). Bacterial challenge showed that feeding on probiotic, prebiotic and synbiotic remarkably increased resistance against S. iniae (P<0.05), with the highest resistance observed in the synbiotic group. The results indicated that although both GOS and P. acidilactici significantly increased antioxidant defence and improved disease resistance, combination of GOS and P. acidilactici had an additive effect. Combination of GOS and P. acidilactici is recommended to increase trout antioxidant capacity and streptococcosis.

Keywords

Adema C.M., Vander Knaap W.P.W., Sminia T. (1991). Molluscan haemocyte mediated cytotoxicity: the role of reactive oxygen intermediates. Rev. Aquat. Sci., 4: 201-223.Search in Google Scholar

Bricknell I., Dalmo R.A. (2005). The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol., 19: 457-472.Search in Google Scholar

Brunt J., Newaj- Fyzul A., Austin B. (2007). Development of probiotics for the control of multiple bacterial diseases of rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis., 30:573-579.Search in Google Scholar

Burr G., Hume M., Ricke S., Nisbet D., Gatlin III D. (2010). In vitro and in vivo evaluation of the prebiotics Gro Biotic®-A, inulin, mannanoligosaccharide, and galactooligosaccharide on thedigestive microbiota and performance of hybrid striped bass (Morone chrysops × Morone saxatilis). Microb. Ecol., 59: 187-198.Search in Google Scholar

Castex M., Lemaire P., Wabete N., Chim L. (2009). Effect of dietary probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress status of shrimp Litopenaeus stylirostris. Aquaculture, 294: 306-313.Search in Google Scholar

Castex M., Lemaire P., Wabete N., Chim L. (2010). Effect of probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress of Litopenaeus stylirostris under Vibrio nigripulchritudo challenge. Fish Shellfish Immunol., 28: 622-631.Search in Google Scholar

Cerezuela R., Meseguer J., Esteban M. (2011). Current knowledge in synbiotic use for fish aquaculture: Areview. J. Aquacult. Res. Dev., 1: 1-7.Search in Google Scholar

Cohen G., Kim M., Ogwu V. (1996). Amodified catalase assay suitable foraplate reader and for the analysis of brain cell cultures. J. Neurosci. Meth., 67: 53-56.Search in Google Scholar

Cohen M.B., Duvel D.L. (1988). Characterization of the inhibition of glutathione reductase and the recovery of enzyme activity in exponentially growing murine leukemia (11210) cells treated with 1, 3-bis (2-chloroethyl)-1-nitrosourea. Biochem. Pharmacol., 37: 3317-3320.Search in Google Scholar

Del Rio D., Stewart A.J., Pellegrini N. (2005). Areview of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovas. Dis., 15:316-328.Search in Google Scholar

Denev S., Staykov Y., Moutafchieva R., Beev G. (2009). Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. Int. Aquat. Res., 1: 1-29.Search in Google Scholar

Esiobu N., Armenta L., Ike J. (2002). Antibiotic resistance in soil and water environments. Int. J. Env. Health., 12: 133-144.Search in Google Scholar

Grisdale - Helland B., Helland S.J., Gatlin III D.M. (2008). The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture, 283: 163-167.Search in Google Scholar

Guzman - Villanueva L.T., Ascencio - Valle F., Macias - Rodriguez M.E., Tovar - Ramirez D. (2013). Effects of dietary b-1,3/1,6-glucan on the antioxidant and digestive enzyme activities of Pacific red snapper (Lutjanus peru) after exposure to lipopolysaccharides. Fish Physiol. Biochem., 40: 827-837.Search in Google Scholar

Habig W.H., Jakoby W.B. (1981). Assays for differentiation of glutathione S-transferases. Meth. Enzymol., 77: 398-405.Search in Google Scholar

Halliwell B., Gutteridge J.M.C. (1999). Free radicals in biology and medicine. Oxford University Press.Search in Google Scholar

Hoseinifar S.H., Khalili M., Khoshbavar Rostami H., Esteban M.Á. (2013). Dietary galactooligosaccharide affects intestinal microbiota, stress resistance, and performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol., 35: 1416-1420.Search in Google Scholar

Hoseinifar S.H., Ringø , E., Shenavar Masouleh A., Esteban M.Á. (2014). Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture:areview. Rev. Aquacult., DOI: 10.1111/raq.1208210.1111/raq.12082Search in Google Scholar

Hoseinifar S.H., Mirvaghefi A., Amoozegar M.A., Sharifian M., Esteban M.Á. (2015 a). Modulation of innate immune response, mucosal parameters and disease resistance in rainbow trout (Oncorhynchus mykiss) upon synbiotic feeding. Fish Shellfish Immunol., 45: 27-32.10.1016/j.fsi.2015.03.02925827628Search in Google Scholar

Hoseinifar S.H., Mirvaghefi A., Amoozegar M.A., Merrifield D.L., Ringø E. 2015 b). In vitro selection ofasynbiotic and in vivo evaluation on intestinal microbiota, performance und physiological response of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquacult. Nutr., doi: 10.1111/anu.12373Search in Google Scholar

Hoseinifar S.H., Esteban M.Á., Cuesta A., Sun Y.Z. (2015 c). Prebiotics and fish immune response:areview of current knowledge and future perspectives. Rev. Fisheries Sci. Aquacult., 23:315-328.10.1080/23308249.2015.1052365Search in Google Scholar

Kaneko T., Yokoyama A., Suzuki M. (1995). Digestibility characteristics of iso-maltooligosaccharides in comparison with several saccharides using the rat jejunum loop method. Biosci. Biotechnol. Biochem., 59: 1190-1194.Search in Google Scholar

Kiron V. (2012). Fish immune system and its nutritional modulation for preventive health care. Anim. Feed Sci. Technol., 173: 111-133.Search in Google Scholar

Livingstone D.R. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollut. Bull., 42: 656-666.Search in Google Scholar

Llewellyn M., Boutin S., Hoseinifar S.H., Derome N. (2014). Teleost microbiomes: progress towards their characterisation, manipulation and applications in aquaculture and fisheries. Front. Microbiol., 5: 1-17.Search in Google Scholar

Lykkesfeldt J. (2007). Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin. Chim. Acta., 380: 50-58.Search in Google Scholar

Manduzio H., Rocher B., Durand F., Galap C., Leboulenger F. (2005). The point about oxidative stress in molluscs. ISJ, 2: 91-104.Search in Google Scholar

Mc Farland V., Inouye L., Lutz C., Jarvis A., Clarke J., Mc Cant D. (1999). Biomarkers of oxidative stress and genotoxicity in livers of field-collected brown bullhead, Ameiurus nebulosus. Arch. Env. Cont. Toxicol., 37: 236-241.Search in Google Scholar

Merrifield D.L., Dimitroglou A., Foey A., Davies S.J., Baker R., Bøgwald J., Castex M., Ringø E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302: 1-18.Search in Google Scholar

Merrifield D., Bradley G., Harper G., Baker R., Munn C., Davies S. (2011). Assessment of the effects of vegetative and lyophilized Pediococcus acidilactici on growth, feed utilization, intestinal colonization and health parameters of rainbow trout (Oncorhynchus mykiss Walbaum). Aquacult. Nutr., 17: 73-79.Search in Google Scholar

Nayak S.K. (2010). Probiotics and immunity:afish perspective. Fish Shellfish Immunol., 29: 2-14.Search in Google Scholar

Neissi A., Rafiee G., Nematollahi M., Safari O. (2013). The effect of Pediococcus acidilactici bacteria used as probiotic supplement on the growth and non-specific immune responses of green terror, Aequidens rivulatus. Fish Shellfish Immunol., 35: 1976-1980.Search in Google Scholar

Panigrahi A., Kiron V., Puangkaew J., Kobayashi T., Satoh S., Sugita H. (2005). The viability of probiotic bacteria asafactor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture, 243: 241-254.Search in Google Scholar

Ringø E., Olsen R.E., Gifstad T.Ø., Dalmo R.A., Amlund H., Hemre G.I., Bakke A.M. (2010). Prebiotics in aquaculture:areview. Aquacult. Nutr., 16: 117-136.Search in Google Scholar

Ringø E., Dimitroglou A., Hoseinifar S.H., Davies S.J. (2014). Prebiotics in finfish: an update. In: Aquaculture nutrition: Gut health, probiotics and prebiotics, Merrifield D., Ringø E. (eds.). Wiley-Blackwell Publishing, Oxford, UK.Search in Google Scholar

Ringwood A.H., Hoguet J., Keppler C.J., Gielazyn M.L., Ward B.P., Rourk A.R. (2003). Cellular biomarkers (lysosomal destabilization, glutathione and lipid peroxidation) in three common estuarine species:amethods handbook. Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston.Search in Google Scholar

Robertson P.A.W., O ’ Dowd C., Burrells C., Williams P., Austin B. (2000). Use of Carnobacterium sp. asaprobiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture, 185: 235-243.Search in Google Scholar

Rurangwa E., Laranja J.L., Van Houdt R., Delaedt Y., Geraylou Z., Vande Wiele T., Van Loo J., Van Craeyveld V., Courtin C.M., Delcour J.A., Ollevier F. (2009). Selected nondigestible carbohydrates and prebiotics support the growth of probiotic fish bacteria mono-cultures in vitro. J. App. Microbiol., 106: 932-940.Search in Google Scholar

Sako T., Matsumoto K., Tanaka R. (1999). Recent progress on research and applications of non-digestible galacto-oligosaccharides. Int. Dairy J., 9: 69-80.Search in Google Scholar

Santacroce M.P., Merra E., Centoducati G., Zacchino V., Casalino E. (2012). Effects of dietary yeast Saccharomyces cerevisiae on the antioxidant system in the liver of juvenile sea bass Dicentrarchus labrax. Fish Physiol. Biochem., 38: 1497-1505.Search in Google Scholar

Shen W.Y., Fu L.L., Li W.F., Zhu Y.R. (2010). Effect of dietary supplementation with Bacillus subtilis on the growth, performance, immune response and antioxidant activities of the shrimp (Litopenaeus vannamei). Aquacult. Res., 41: 1691-1698.Search in Google Scholar

Tahmasebi- Kohyani A., Keyvanshokooh S., Nematollahi A., Mahmoudi N., Pasha- Zanoosi H. (2011). Dietary administration of nucleotides to enhance growth, humoral immune responses, and disease resistance of the rainbow trout (Oncorhynchus mykiss) fingerlings. Fish Shellfish Immunol., 30: 189-193.Search in Google Scholar

Winston G.W., Di Giulio R.T. (1991). Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol., 19: 137-161.Search in Google Scholar

Yang S-P., Wu Z-H., Jian J-C., Zhang X-Z. (2010). Effect of marine red yeast Rhodosporidium paludigenum on growth and antioxidant competence of Litopenaeus vannamei. Aquacult., 309:62-65.Search in Google Scholar

Yarahmadi P., Kolangi Miandare H., Hoseinifar S. (2016). Haemato-immunological and serum biochemical parameters, intestinal histomorphology and growth performance of rainbow trout (Oncorhynchus mykiss) fed dietary fermentable fibre (Vitacel®). Aquacult. Nutr., 22:1134-1142.Search in Google Scholar

Zenteno- Savín T., Saldierna R., Ahuejote - Sandoval M. (2006). Superoxide radical roduction in response to environmental hypoxia in cultured shrimp. Comp. Biochem. Physiol. C 142: 301-308.Search in Google Scholar

Zhang C.N., Li X.F., Xu W.N., Jiang G.Z., Lu K.L., Wang L.N., Liu W.B. (2013). Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis). Fish Shellfish Immunol., 35: 1380-1386.Search in Google Scholar

Zhang Q., Beiping T., Kangsen M., Wenbing Z., Hongming M., Qinghui A., Xiaojie W., Zhiguo L. (2011). Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquacult. Res., 42: 943-952.Search in Google Scholar

Zhou Q.-C., Buentello J.A., Gatlin III D.M. (2010). Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus). Aquaculture, 309: 253-257.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo