1. bookVolume 15 (2015): Issue 4 (October 2015)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Guanine Nucleotide Binding Protein (GNAS Complex Locus) Gene Produces Biallelically Expressed and Paternally Expressed Transcripts in Pigs

Published Online: 29 Oct 2015
Volume & Issue: Volume 15 (2015) - Issue 4 (October 2015)
Page range: 867 - 877
Received: 09 Jan 2015
Accepted: 02 Apr 2015
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Imprinted loci are a subset of genes expressed only from one parental allele. Guanine nucleotide binding protein (GNAS complex locus) produces a few different proteins and noncoding RNAs. It is imprinted in mice and humans, while in pigs imprinting status of only one of them - NESP55 (neuroendocrine secretory protein-55) has been established. In the present study we aimed to establish imprinting status of the other two GNAS transcripts. We collected a panel of tissues (muscle, liver, kidney cortex, heart, fat, ovary, brain, blood) from the animals (aged 40-210 days) heterozygous in rs#333005482 polymorphism. We performed several RT -PCRs (Reverse Transcription Polymerase Chain Reactions) with variant specific primers and sequenced the cDNA products obtained. We observed only paternal allele in all tissues at all developmental stages after sequencing with primers specific to variant 8 of GNAS gene and both alleles when sequencing with primers specific to variant 6. Our results show for the first time that, in pigs, GNAS complex locus produces biallelically expressed and paternally expressed transcripts, in the same way as previously demonstrated in mice and humans

Keywords

Bastepe M. (2007). The GNAS Locus: Quintessential complex gene encoding Gsα, XLαs, and other imprinted transcripts. Curr. Genomics, 8: 398-414.Search in Google Scholar

Bischoff S.R., Tsai S., Hardison N., Motsinger- Reif A.A., Freking B.A., Non- neman D., Rohrer G., Piedrahita J.A. (2009). Characterization of conserved and nonconserved imprinted genes in swine. Biol. Reprod., 81: 906-920.Search in Google Scholar

Bratuś A., Słota E. (2009). Comparative cytogenetic and molecular studies of DMdomain genes in pig and cattle. Cytogenet. Genome Res., 126: 180-185.Search in Google Scholar

Campbell R., Gosden C.M., Bonthron D.T. (1994). Parental origin of transcription from the human GNAS1 gene. J. Med. Genet., 31: 607-614.Search in Google Scholar

Chomczyński P., Sacchi N. (1987). Single-step method of RNAisolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162: 156-159.Search in Google Scholar

Congras A., Yerle- Bouissou M., Pinton A., Vignoles F., Liaubet L., Ferchaud S., Acloque H. (2014). Sperm DNAmethylation analysis in swine reveals conserved and speciesspecific methylation patterns and highlights an altered methylation at the GNASlocus in infertile boars. Biol. Reprod., 91: 137.Search in Google Scholar

De Veale B.,vander Kooy D., Babak T. (2012). Critical evaluation of imprinted gene expression by RNA-Seq:anew perspective. PLo S Genet., 8(3): e1002600.Search in Google Scholar

Elli F.M., Desanctis L., Ceoloni B., Maria Barbieri A., Bordogna P., Beck-Pec- coz P., Spada A., Mantovani G. (2013). Pseudohypoparathyroidism type Ia and pseudopseudohypoparathyroidism: The growing spectrum of GNASinactivating mutations. Hum. Mutat., 34: 411-416.Search in Google Scholar

Gregg C., Zhang J., Butler J.E., Haig D., Dulac C. (2010). Sex-specific parent-of-origin allelic expression in the mouse brain. Science, 329: 682-685.Search in Google Scholar

Hayden E.C. (2012). RNAstudies under fire. Nature, 484: 428.Search in Google Scholar

Hayward B.E., Kamiya M., Strain L., Moran V., Campbell R., Hayashizaki Y., Bonthron D.T. (1998 a). The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed Gproteins. Proc. Natl. Acad. Sci. USA, 95: 10038-10043.10.1073/pnas.95.17.10038214579707596Search in Google Scholar

Hayward B.E., Moran V., Strain L., Bonthron D.T. (1998 b). Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proc. Natl. Acad. Sci. USA, 95: 15475-15480.10.1073/pnas.95.26.15475280679860993Search in Google Scholar

Klenke S., Siffert W., Frey U.H. (2011). Anovel aspect of GNASimprinting: higher maternal expression of Gαs in human lymphoblasts, peripheral blood mononuclear cells, mammary adipose tissue, and heart. Mol. Cell. Endocrinol., 341: 63-70.Search in Google Scholar

Li S., Li J., Tian J., Dong R., Wei J., Qiu X., Jiang C. (2012). Characterization, tissue expression, and imprinting analysis of the porcine CDKN1Cand NAP1L4 genes. J. Biomed. Biotechnol., 946527.Search in Google Scholar

Liu J., Yu S., Litman D., Chen W., Weinstein L.S. (2000). Identification ofamethylation imprint mark within the mouse GNASlocus. Mol. Cell. Biol., 20: 5808-5817.Search in Google Scholar

Liu J., Chen M., Deng C., Bourc’his D., Nealon J.G., Erlichman B., Bestor T.H., Weinstein L.S. (2005). Identification of the control region for tissue-specific imprinting of the stimulatory Gprotein alpha-subunit. Proc. Natl. Acad. Sci. USA, 102: 5513-5518.Search in Google Scholar

Mantovani G., Ballare E., Giammona E., Beck-Peccoz P., Spada A. (2002). The Gsα gene: predominant maternal origin of transcription in human thyroid gland and gonads. J. Clin. Endocrinol. Metab., 87: 4736-4740.Search in Google Scholar

Moore T., Haig D. (1991). Genomic imprinting in mammalian development:aparental tug-of-war. Trends. Genet., 7: 45-49.Search in Google Scholar

Oczkowicz M., Piestrzy ńska- Kajtoch A., Ropka- Molik K., Rejduch B., Ec - kert R. (2012). Expression and imprinting analysis of the NESP55 gene in pigs. Gene Expr. Patterns, 12: 18-23.Search in Google Scholar

Oczkowicz M., Ropka- Molik K., Tyra M. (2013). Analysis of the associations between polymorphisms in GNAScomplex locus and growth, carcass and meat quality traits in pigs. Mol. Biol. Rep., 40: 6419-6427.Search in Google Scholar

Peters J., Wroe S.F., Wells C.A., Miller H.J., Bodle D., Beechey C.V., William- son C.M., Kelsey G. (1999). Acluster of oppositely imprinted transcripts at the GNASlocus in the distal imprinting region of mouse chromosome 2. Proc. Natl. Acad. Sci. USA, 96: 3830-3835.Search in Google Scholar

Plagge A., Isles A.R., Gordon E., Humby T., Dean W., Gritsch S., Fischer- Colb - rie R., Wilkinson L.S., Kelsey G. (2005). Imprinted NESP55 influences behavioral reactivity to novel environments. Mol. Cell. Biol., 25: 3019-3026.Search in Google Scholar

Rejduch B., Oczkowicz M., Piestrzy ńska- Kajtoch A., Pi órkowska K., Wi - toń M., Rogoz M., Ró życki M. (2010). Expression of IGFBP-3 and IGFBP-5 genes in muscles of pigs representing five different breeds. J. Anim. Feed Sci., 19: 554-563.Search in Google Scholar

Ríos C.N., Skoracki R.J., Mathur A.B. (2012). GNAS1 and PHD2 short-interfering RNAsupport bone regeneration in vitro and in an in vivo sheep model. Clin. Orthop. Relat. Res., 470: 2541-2553.Search in Google Scholar

Stratil A., Knoll A., Horák P., Bílek K., Bechynov á R., Bartenschlager H., Va n Poucke M., Peelman L.J., Svobodov á K., Geldermann H. (2008). Mapping of the porcine FBN2, YWHAQ, CNN3, DCN, POSTN, SPARC, RBM39 and GNASgenes, expressed in foetal skeletal muscles. Anim. Genet., 39: 204-205.Search in Google Scholar

Van Laere A.S., Nguyen M., Braunschweig M., Nezer C., Collette C., Moreau L., Archibald A.L., Haley C.S., Buys N., Tally M., Andersson G., Georges M., An - dersson L. (2003). Aregulatory mutation in IGF2 causesamajor QTLeffect on muscle growth in the pig. Nature, 425: 832-836.Search in Google Scholar

Wang M., Zhang X., Kang L., Jiang C., Jiang Y. (2012). Molecular characterization of porcine NECD, SNRPNand UBE3Agenes and imprinting status in the skeletal muscle of neonate pigs. Mol. Biol. Rep., 39: 9415-9422.Search in Google Scholar

Williamson C.M., Ball S.T., Nottingham W.T., Skinner J.A., Plagge A., Tur- ner M.D., Powles N., Hough T., Papworth D., Fraser W.D., Maconochie M., Pe - ters J. (2004). Acis-acting control region is required exclusively for the tissue-specific imprinting of GNAS. Nat. Genet., 36: 894-899.Search in Google Scholar

Yu S., Yu D., Lee E., Eckhaus M., Lee R., Corria Z., Accili D., Westphal H., Wein - stein L.S. (1998). Variable and tissue-specific hormone resistance in heterotrimeric Gs protein α-subunit (Gsα) knockout mice is due to tissue-specific imprinting of the Gsα gene. Proc. Natl. Acad. Sci. USA, 95: 8715-8720.Search in Google Scholar

Zhang F.W., Han Z.B., Deng C.Y., He H.J., Wu Q. (2012). Conservation of genomic imprinting at the NDN, MAGEL2 and MESTloci in pigs. Genes Genet. Syst., 87: 53-58. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo