Open Access

Computer modeling of hippocampal CA1 pyramidal cells - a tool for in silico experiments


Cite

1. D’Angelo E, Solinas S, Garrido J et al. Realistic modeling of neurons and networks: towards brain simulation. Funct Neurol. 2013; 28(3):153-166.Search in Google Scholar

2. Gewaltig MO, Cannon R. Current practice in software development for computational neuroscience and how to improve it. PLoS Comput Biol. 2014; 10(1):e1003376.10.1371/journal.pcbi.1003376Search in Google Scholar

3. Gleeson P, Crook S, Cannon RC et al. NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol. 2010; 6(6):e1000815.10.1371/journal.pcbi.1000815Search in Google Scholar

4. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971; 34(1):171-175.10.1016/0006-8993(71)90358-1Search in Google Scholar

5. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957; 20(1):11-21.10.1136/jnnp.20.1.1149722913406589Search in Google Scholar

6. Corkin S. What’s new with the amnesic patient H.M.? Nat Rev Neurosci. 2002; 3(2):153-160.10.1038/nrn72611836523Search in Google Scholar

7. Green JD. The Hippocampus. Physiol Rev. 1964; 44:561-608.10.1152/physrev.1964.44.4.56114221342Search in Google Scholar

8. Tellez-Zenteno JF, Hernandez-Ronquillo L. A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat. 2012; doi:10.1155/2012/630853.10.1155/2012/630853342043222957234Search in Google Scholar

9. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991; 82(4):239-259.10.1007/BF003088091759558Search in Google Scholar

10. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002; 297(5580):353-356.10.1126/science.107299412130773Search in Google Scholar

11. Harrison PJ, Law AJ, Eastwood SL. Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann N Y Acad Sci. 2003; 1003:94-101.10.1196/annals.1300.00614684437Search in Google Scholar

12. Carnevale NT, Hines ML. The NEURON Book: Cambridge University Press; 2006.10.1017/CBO9780511541612Search in Google Scholar

13. What is NEURON? 2014 [accessed on 2014.11.10]; Available from: http://www.neuron.yale.edu/neuron/what_is_neuron.Search in Google Scholar

14. Royeck M, Horstmann MT, Remy S et al. Role of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons. J Neurophysiol. 2008; 100(4):2361-2380.10.1152/jn.90332.200818650312Search in Google Scholar

15. Shah MM, Migliore M, Valencia I et al. Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A. 2008; 105(22):7869-7874.10.1073/pnas.0802805105240848318515424Search in Google Scholar

16. Ferrante M, Blackwell KT, Migliore M, Ascoli GA. Computational models of neuronal biophysics and the characterization of potential neuropharmacological targets. Curr Med Chem. 2008; 15(24):2456-2471.10.2174/092986708785909094356039218855673Search in Google Scholar

17. Miceli F, Soldovieri MV, Lugli L et al. Neutralization of a unique, negatively- charged residue in the voltage sensor of K V 7.2 subunits in a sporadic case of benign familial neonatal seizures. Neurobiol Dis. 2009; 34(3):501-510.10.1016/j.nbd.2009.03.00919344764Search in Google Scholar

18. Fineberg JD, Ritter DM, Covarrubias M. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels. J Gen Physiol. 2012; 140(5):513-527.10.1085/jgp.201210869348311623109714Search in Google Scholar

19. Migliore M, Hoffman DA, Magee JC, Johnston D. Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci. 1999; 7(1):5-15.10.1023/A:1008906225285Search in Google Scholar

20. Golding NL, Kath WL, Spruston N. Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J Neurophysiol. 2001; 86(6):2998-3010.10.1152/jn.2001.86.6.299811731556Search in Google Scholar

21. Migliore M, Ferrante M, Ascoli GA. Signal propagation in oblique dendrites of CA1 pyramidal cells. J Neurophysiol. 2005; 94(6):4145-4155.10.1152/jn.00521.2005356039116293591Search in Google Scholar

22. Golding NL, Mickus TJ, Katz Y et al. Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol. 2005; 568(Pt 1):69-82.10.1113/jphysiol.2005.086793147476416002454Search in Google Scholar

23. Jarsky T, Roxin A, Kath WL, Spruston N. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci. 2005; 8(12):1667-1676.10.1038/nn159916299501Search in Google Scholar

24. Ascoli GA, Gasparini S, Medinilla V, Migliore M. Local control of postinhibitory rebound spiking in CA1 pyramidal neuron dendrites. J Neurosci. 2010; 30(18):6434-6442.10.1523/JNEUROSCI.4066-09.2010331966420445069Search in Google Scholar

25. Migliore M. On the integration of subthreshold inputs from Perforant Path and Schaffer Collaterals in hippocampal CA1 pyramidal neurons. J Comput Neurosci. 2003; 14(2):185-192.10.1023/A:1021906818333Search in Google Scholar

26. Migliore M, Messineo L, Ferrante M. Dendritic Ih selectively blocks temporal summation of unsynchronized distal inputs in CA1 pyramidal neurons. J Comput Neurosci. 2004; 16(1):5-13.10.1023/B:JCNS.0000004837.81595.b0Search in Google Scholar

27. Migliore M, Migliore R. Know your current I(h): interaction with a shunting current explains the puzzling effects of its pharmacological or pathological modulations. PLoS One. 2012; 7(5):e36867.10.1371/journal.pone.0036867335047622606301Search in Google Scholar

28. Poolos NP, Migliore M, Johnston D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci. 2002; 5(8):767-774.10.1038/nn89112118259Search in Google Scholar

29. Gasparini S, Migliore M, Magee JC. On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci. 2004; 24(49):11046-11056.10.1523/JNEUROSCI.2520-04.2004673026715590921Search in Google Scholar

30. Ashhad S, Narayanan R. Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. J Physiol. 2012; 591(Pt 7):1645-1669.10.1113/jphysiol.2012.245688362484423283761Search in Google Scholar

31. Watanabe S, Hoffman DA, Migliore M, Johnston D. Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A. 2002; 99(12):8366-8371.10.1073/pnas.12221059912307312048251Search in Google Scholar

32. Li X, Ascoli GA. Computational simulation of the input-output relationship in hippocampal pyramidal cells. J Comput Neurosci. 2006; 21(2):191-209.10.1007/s10827-006-8797-z16871350Search in Google Scholar

33. Li X, Ascoli GA. Effects of synaptic synchrony on the neuronal input-output relationship. Neural Comput. 2008; 20(7):1717-1731.10.1162/neco.2008.10-06-385Search in Google Scholar

34. Poirazi P, Brannon T, Mel BW. Pyramidal neuron as two-layer neural network. Neuron. 2003; 37(6):989-999.10.1016/S0896-6273(03)00149-1Search in Google Scholar

35. Poirazi P, Brannon T, Mel BW. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron. 2003; 37(6):977-987.10.1016/S0896-6273(03)00148-XSearch in Google Scholar

36. Marcelin B, Chauviere L, Becker A et al. h channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiol Dis. 2009; 33(3):436-447.10.1016/j.nbd.2008.11.01919135151Search in Google Scholar

37. Graham BP. Pattern recognition in a compartmental model of a CA1 pyramidal neuron. Network. 2001; 12(4):473-492.10.1080/net.12.4.473.492Search in Google Scholar

38. Marasco A, Limongiello A, Migliore M. Using Strahler’s analysis to reduce up to 200-fold the run time of realistic neuron models. Sci Rep. 2013; 3:2934.10.1038/srep02934379631124121727Search in Google Scholar

39. Hao J, Wang XD, Dan Y et al. An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proc Natl Acad Sci U S A. 2009; 106(51):21906-21911.10.1073/pnas.0912022106279988519955407Search in Google Scholar

40. Magee JC, Cook EP. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci. 2000; 3(9):895-903.10.1038/7880010966620Search in Google Scholar

41. London M, Segev I. Synaptic scaling in vitro and in vivo. Nat Neurosci. 2001; 4(9):853-855.10.1038/nn0901-85311528406Search in Google Scholar

42. Vladimirov N, Tu Y, Traub RD. Shortest Loops are Pacemakers in Random Networks of Electrically Coupled Axons. Front Comput Neurosci. 2012; 6:17.10.3389/fncom.2012.00017332429822514532Search in Google Scholar

43. Berzhanskaya J, Chernyy N, Gluckman BJ et al. Modulation of hippocampal rhythms by subthreshold electric fields and network topology. J Comput Neurosci. 2012; 34(3):369-389.10.1007/s10827-012-0426-4354932623053863Search in Google Scholar

44. Lee SH, Marchionni I, Bezaire M et al. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron. 2014; 82(5):1129-1144.10.1016/j.neuron.2014.03.034407644224836505Search in Google Scholar

45. Vladimirov N, Tu Y, Traub RD. Synaptic gating at axonal branches, and sharp-wave ripples with replay: a simulation study. Eur J Neurosci. 2013; 38(10):3435-3447.10.1111/ejn.12342486089823992155Search in Google Scholar

46. Migliore M, Novara G, Tegolo D. Single neuron binding properties and the magical number 7. Hippocampus. 2008; 18(11):1122-1130.10.1002/hipo.2048018680161Search in Google Scholar

47. Migliore M, De Blasi I, Tegolo D, Migliore R. A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior. Neural Netw. 2011; 24(6):552-559.10.1016/j.neunet.2011.01.00121315555Search in Google Scholar

48. Culmone V, Migliore M. Progressive effect of beta amyloid peptides accumulation on CA1 pyramidal neurons: a model study suggesting possible treatments. Front Comput Neurosci. 2012; 6:52.10.3389/fncom.2012.00052340202622837746Search in Google Scholar

49. Morse TM, Carnevale NT, Mutalik PG et al. Abnormal Excitability of Oblique Dendrites Implicated in Early Alzheimer’s: A Computational Study. Front Neural Circuits. 2010; 4.10.3389/fncir.2010.00016290115220725509Search in Google Scholar

50. Cassara AM, Maraviglia B. Microscopic investigation of the resonant mechanism for the implementation of nc-MRI at ultra-low field MRI. Neuroimage. 2008; 41(4):1228-1241.10.1016/j.neuroimage.2008.03.05118474435Search in Google Scholar

51. Cavarretta F, Carnevale NT, Tegolo D, Migliore M. Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: implications for power line emissions. Front Cell Neurosci. 2014; 8:310.10.3389/fncel.2014.00310419143225346660Search in Google Scholar

52. Polsky A, Mel BW, Schiller J. Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci. 2004; 7(6):621-627.10.1038/nn125315156147Search in Google Scholar

53. Pissadaki EK, Sidiropoulou K, Reczko M, Poirazi P. Encoding of spatiotemporal input characteristics by a CA1 pyramidal neuron model. PLoS Comput Biol. 2010; 6(12):e1001038.10.1371/journal.pcbi.1001038300298521187899Search in Google Scholar

54. Gomez Gonzalez JF, Mel BW, Poirazi P. Distinguishing Linear vs. Non- Linear Integration in CA1 Radial Oblique Dendrites: It’s about Time. Front Comput Neurosci. 2011; 5:44.Search in Google Scholar

55. Sterratt DC, Groen MR, Meredith RM, van Ooyen A. Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy. PLoS Comput Biol. 2012; 8(6):e1002545.10.1371/journal.pcbi.1002545337522022719238Search in Google Scholar

56. Bianchi D, Marasco A, Limongiello A et al. On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. J Comput Neurosci. 2012; 33(2):207-225.10.1007/s10827-012-0383-y22310969Search in Google Scholar

57. Romani A, Marchetti C, Bianchi D et al. Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses. Front Comput Neurosci. 2013; 7:1.10.3389/fncom.2013.00001355511723355821Search in Google Scholar

58. Markaki M, Orphanoudakis S, Poirazi P. Modelling reduced excitability in aged CA1 neurons as a calcium-dependent process. Computational Neuroscience. 2005; 65-66:305-314.10.1016/j.neucom.2004.10.023Search in Google Scholar

59. Shah MM, Migliore M, Brown DA. Differential effects of Kv7 (M-) channels on synaptic integration in distinct subcellular compartments of rat hippocampal pyramidal neurons. J Physiol. 2011; 589(Pt 24):6029-6038.10.1113/jphysiol.2011.220913324585522041186Search in Google Scholar

60. Wimmer VC, Reid CA, Mitchell S et al. Axon initial segment dysfunction in a mouse model of genetic epilepsy with febrile seizures plus. J Clin Invest. 2010; 120(8):2661-2671.10.1172/JCI42219291219320628201Search in Google Scholar

61. Uebachs M, Opitz T, Royeck M et al. Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J Neurosci. 2010; 30(25):8489-8501. 10.1523/JNEUROSCI.1534-10.2010663462420573896Search in Google Scholar

eISSN:
2247-6113
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Clinical Medicine, other