Open Access

Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Systems Analysis: Modeling and Control (special section, pp. 457-499), Vyacheslav Maksimov and Boris Mordukhovich (Eds.)

Cite

Bank, R.E. and Rose, D.J. (1987). Some error estimates for the box methods, SIAM Journal on Numerical Analysis24(4): 777–787.10.1137/0724050Open DOISearch in Google Scholar

Cai, J.X. and Miao, J. (2012). New explicit multisymplectic scheme for the complex modified Korteweg–de Vries equation, Chinese Physics Letters29(3): 030201.10.1088/0256-307X/29/3/030201Open DOISearch in Google Scholar

Cai, Z.Q. (1991). On the finite volume element method, Numerische Mathematik58(7): 713–735.10.1007/BF01385651Search in Google Scholar

Costa, R., Machado, G.J. and Clain, S. (2015). A sixth-order finite volume method for the 1D biharmonic operator: Application to intramedullary nail simulation, International Journal of Applied Mathematics and Computer Science25(3): 529–537, DOI: 10.1515/amcs-2015-0039.10.1515/amcs-2015-0039Open DOISearch in Google Scholar

Erbay, H.A. (1998). Nonlinear transverse waves in a generalized elastic solid and the complex modified Korteweg–de Vries equation, Physica Scripta58(1): 9–14.10.1088/0031-8949/58/1/001Search in Google Scholar

Erbay, S. and Suhubi, E.S. (1989). Nonlinear wave propagation in micropolar media. II: Special cases, solitary waves and Painlevé analysis, International Journal of Engineering Science27(8): 915–919.Search in Google Scholar

Ewing, R., Lin, T. and Lin, Y. (2000). On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM Journal on Numerical Analysis39(6): 1865–1888.10.1137/S0036142900368873Open DOISearch in Google Scholar

Furihata, D. and Matsuo, T. (2010). Discrete Variational Derivative Method: A Structure-Preserving Numerical Method For Partial Differential Equations, CRC Press, London.10.1201/b10387Search in Google Scholar

Furihata, D. and Mori, M. (1996). A stable finite difference scheme for the Cahn–Hilliard equation based on the Lyapunov functional, Zeitschrift fur Angewandte Mathematik und Mechanik76(1): 405–406.Search in Google Scholar

Gorbacheva, O.B. and Ostrovsky, L.A. (1983). Nonlinear vector waves in a mechanical model of a molecular chain, Physica D8(1–2): 223–228.10.1016/0167-2789(83)90319-6Search in Google Scholar

Hackbusch, W. (1989). On first and second order box schemes, Computing41(4): 277–296.10.1007/BF02241218Open DOISearch in Google Scholar

Ismail, M.S. (2008). Numerical solution of complex modified Korteweg–de Vries equation by Petrov–Galerkin method, Applied Mathematics and Computation202(2): 520–531.10.1016/j.amc.2008.02.033Search in Google Scholar

Ismail, M.S. (2009). Numerical solution of complex modified Korteweg–de Vries equation by collocation method, Communications in Nonlinear Science and Numerical Simulation14(3): 749–759.10.1016/j.cnsns.2007.12.005Open DOISearch in Google Scholar

Karney, C.F.F., Sen, A. and Chu, F.Y.F. (1979). Nonlinear evolution of lower hybrid waves, Physics of Fluids22(5): 940–952.10.1063/1.862688Open DOISearch in Google Scholar

Koide, S. and Furihata, D. (2009). Nonlinear and linear conservative finite difference schemes for regularized long wave equation, Japan Journal of Industrial and Applied Mathematics26(1): 15–40.10.1007/BF03167544Open DOISearch in Google Scholar

Korkmaz, A. and Dağ, I. (2009). Solitary wave simulations of complex modified Korteweg–de Vries equation using differential quadrature method, Computer Physics Communications180(9): 1516–1523.10.1016/j.cpc.2009.04.012Search in Google Scholar

Li, R.H., Chen, Z.Y. and Wu, W. (2000). Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Marcel Dekker Inc., New York, NY.Search in Google Scholar

Matsuo, T. and Furihata, D. (2001). Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations, Journal of Computational Physics171(2): 425–447.10.1006/jcph.2001.6775Search in Google Scholar

Matsuo, T. and Kuramae, H. (2012). An alternating discrete variational derivative method, AIP Conference Proceedings1479: 1260–1263.10.1063/1.4756383Search in Google Scholar

Miyatake, Y. and Matsuo, T. (2014). A general framework for finding energy dissipative/conservative H1-Galerkin schemes and their underlying H1-weak forms for nonlinear evolution equations, BIT Numerical Mathematics54(4): 1119–1154.10.1007/s10543-014-0483-3Search in Google Scholar

Muslu, G.M. and Erabay, H.A. (2003). A split-step Fourier method for the complex modified Korteweg–de Vries equation, Computers & Mathematics with Applications45(1): 503–514.10.1016/S0898-1221(03)80033-0Open DOISearch in Google Scholar

Uddin, M., Haq, S. and Islam, S.U. (2009). Numerical solution of complex modified Korteweg–de Vries equation by mesh-free collocation method, Computers & Mathematics with Applications58(3): 566–578.10.1016/j.camwa.2009.03.104Open DOISearch in Google Scholar

Wang, Q.X., Zhang, Z.Y., Zhang, X.H. and Zhu, Q.Y. (2014). Energy-preserving finite volume element method for the improved Boussinesq equation, Journal of Computational Physics270: 58–69.10.1016/j.jcp.2014.03.053Search in Google Scholar

Yaguchi, T., Matsuo, T. and Sugihara, M. (2010). An extension of the discrete variational method to nonuniform grids, Journal of Computational Physics229(11): 4382–4423.10.1016/j.jcp.2010.02.018Search in Google Scholar

Yan, J.L., Zhang, Q., Zhu, L. and Zhang, Z.Y. (2016). Two-grid methods for finite volume element approximations of nonlinear Sobolev equations, Numerical Functional Analysis and Optimization37(3): 391–414.10.1080/01630563.2015.1115415Search in Google Scholar

Zhang, Z.Y. and Lu, F.Q. (2012). Quadratic finite volume element method for the improved Boussinesq equation, Journal of Mathematical Physics53(1): 013505.10.1063/1.3672197Search in Google Scholar

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics