Open Access

Transient Analysis of a Railgun with Permanent Magnets Support


Cite

1. Cooper K.P., Jones H.N., Meger R.A. (2007), Analysis of railgun barrel material, IEEE Transactions on Magnetics, 43(1), 120-125.10.1109/TMAG.2006.887654Search in Google Scholar

2. Domin J., Kluszczynski K. (2013), Hybrid pneumatic-electro-magnetic launcher - general concept, mathematical model and results of simulation, Przegląd Elektrotechniczny, 89(12), 21-25.Search in Google Scholar

3. Gieras J. F., Piech Z. J., Tomczuk B. (2011), Linear synchronous motors, CRC Press, Taylor & Francis Group.Search in Google Scholar

4. Gosiewski Z., Klosowski P. (2008), Support of work of electro-magnetic gun by using permanent magnets, Bulletin of the Military University of Technology, 57(3), 87-95.Search in Google Scholar

5. Hogan J.D., Spray J.G., Rogers R.J., Vincent G., Schneider M., (2013), Dynamic fragmentation of planetary materials: ejecta length quantification and semi-analytical modelling, International Journal of Impact Enginee-ring, 62, 219–228.10.1016/j.ijimpeng.2013.07.006Search in Google Scholar

6. Hundertmark S., Schneider M., Simicic D., Vincent G., (2013), Experiments to increase the used energy with the PEGASUS railgun installation, http://arxiv.org/pdf/1402.6094v1.pdf.10.1109/PLASMA.2013.6633350Search in Google Scholar

7. Kluszczynski K., Domin J. (2015), Two module electromagnetic launcher with pneumatic assist: modelling, computer simulations and laboratory investigations, COMPEL (The International Journal for Computation and Mathematics in Electrical and Electronic Engineering), 34(3), 691-709.10.1108/COMPEL-10-2014-0280Search in Google Scholar

8. McNab I.R., Beach F.C. (2007), Naval railguns, IEEE Transactions on Magnetics, 43(1), 463-468.10.1109/TMAG.2006.887446Search in Google Scholar

9. Piekielny P. (2015), The measurement stand for the testing of the electrodynamic accelerator parameters, Zeszyty Naukowe Politechniki Opolskiej, 71, 53-54.Search in Google Scholar

10. Piskur P. (2010), Multiparameter optimization of construction and control of an electromagnetic launcher for application in linear drive of machining tool, Ph.D. theses, Koszalin University of Technology, Department of Mechatronics, Nanotechnology and Vacuum Technology, Koszalin, Poland. (in polish)Search in Google Scholar

11. Poniaev S.A., Bobashev S.V., Zhukov R.O., Sedov A.I., Izotov S.N., Kulakov S.L., Smirnova M.N., (2015), Small-size railgun of mm-size solid bodies for hypervelocity material testing, Acta Astronautica, 109, 162-165.10.1016/j.actaastro.2014.11.012Search in Google Scholar

12. Tang L., He J., Chen L., Xia S., Feng D., Li J., Yan P., (2015), Study of some influencing factors of armature current distribution at current ramp-up stage in railgun, IEEE Transactions on Plasma Science, 43(5), 1585-1591.Search in Google Scholar

13. Tumanski S. (2011), Handbook of Magnetic Measurements, CRC Press.Search in Google Scholar

14. Waindok A., Mazur G. (2011), Mutual inductances in a mathematical model of the three-stage reluctance accelerator, 3rd International Students Conference on Electrodynamics and Mechatronics (SCE III), Opole, Poland, 115-118.10.1109/SCE.2011.6092136Search in Google Scholar

15. Waindok A., Piekielny P. (2013), Analysis of selected constructions of the electrodynamic accelerator, International Symposium on Electrodynamic and Mechatronic Systems (SELM), Zawiercie, Poland, 51-52.10.1109/SELM.2013.6562975Search in Google Scholar

16. Wild B., Schuppler C., Alouahabi F., Schneider M., Hoffman R. (2014), The influence of the rail material on the multishot performance of the Rapid Fire Railgun (RAFIRA), 17th International Symposium on Electromagnetic Launch Technology (EML), La Jolla, CA, USA.10.1109/EML.2014.6920666Search in Google Scholar

17. Zimon J., Tomczuk B., Wajnert D. (2012), Field-circuit modeling of AMB system for various speeds of the rotor, Journal of Vibroengineering, 14(1), 165-170.Search in Google Scholar