Open Access

Asymptotic Approximations to the Non-Isothermal Distributed Activation Energy Model for Bio-Mass Pyrolysis


Cite

1. Anthony D.B. (1974), Rapid devolatilization and hydrogasification of pulverized coal, DSc. thesis, Massachusetts Institute of Technology.Search in Google Scholar

2. Armstrong R., Kulesza B.L.J. (1981), An approximate solution to the equation x = exp (−x/ϵ), Bull. Institute of Mathematics and its Applications, 17, 56.Search in Google Scholar

3. Brown M. E. (2001), Introduction to Thermal Analysis, Techniques and Applications, Kluwer Academic Publisher, Dordrecht.Search in Google Scholar

4. Burnham A.K., Braun R.L. (1999), Global kinetic analysis of complex materials, Energy Fuels, 13, 1-22.10.1021/ef9800765Open DOISearch in Google Scholar

5. Burnham A.K., Schmidt B.J., and Braun R.L (1995), A test of parallel reaction model using kinetic measurements on hydrous pyrolysis residues, Geochem, 23, 931-939.10.1016/0146-6380(95)00069-0Search in Google Scholar

6. Capart R, Khezami L., Burnham A.K. (2004), Assessment of various kinetic models for the pyrolysis of microgranular cellulose, Thermochim. Acta, 417(1), 79-89.Search in Google Scholar

7. Conesa J. A., Marcilla A., Caballero J. A., Font R. (2001), Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data, J. Anal. Appl. Pyrolysis, 617, 58–59.Search in Google Scholar

8. Conesa J.A., Caballero J.A., Marcilla A., Font R. (1995), Analysis of different kinetic models in the dynamic pyrolysis of cellulose, Thermochim. Acta, 254, 175-192.Search in Google Scholar

9. Criado J.M., Pérez-Maqueda L.A. (2005), Sample controlled thermal analysis and kinetics, J. Therm. Anal. Cal., 80, 27-33.10.1007/s10973-005-0609-6Open DOISearch in Google Scholar

10. Dhaundiyal A., Singh S.B. (2016), Asymptotic approximations to the distributed activation energy model for non-isothermal pyrolysis of loose biomass using the Weibull distribution, Archivum Combustionis, 36(2), 131-146.Search in Google Scholar

11. Dhaundiyal A., Singh S.B. (2016), Proceedings of the Latvian Academy of Sciences, Section B. Natural, Exact, and Applied Sciences, 70, 64–70.Search in Google Scholar

12. Di Blasi C. (2008), Modeling chemical and physical processes of wood and biomass pyrolysis, Progress in Energy and Combustion Science, 34, 47-90.10.1016/j.pecs.2006.12.001Search in Google Scholar

13. Doyle C.D. (1962), Estimating isothermal life from thermogravimetric data, J. Appl. Polym. Sci. 6, 639-642.10.1002/app.1962.070062406Open DOISearch in Google Scholar

14. Ferdous D, Dalai A.K, Bej S.K., Thring R.W. (2002), Pyrolysis of lignins, experimental and kinetics studies, Energy Fuels, 16, 1405–141210.1021/ef0200323Open DOISearch in Google Scholar

15. Folgueras M.B., Diaz R.M., Xiberta J., Prieto I. (2003), Thermogravimetric analysis of the co-combustion of coal and sewage sludge, Fuel, 82, 2051-2055.10.1016/S0016-2361(03)00161-3Open DOISearch in Google Scholar

16. Galgano A., Blasi C.D. (2003), Modeling wood degradation by the unreacted-core-shrinking approximation, Eng. Chem. Res, 42, 2101-2111.10.1021/ie020939oOpen DOISearch in Google Scholar

17. Giuntoli J., de Jong W., Arvelakis S., Spliethoff H., Verkooijen A.H.M. (2009), Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis, Dry distiller's grains with solubles (DDGS) and chicken manure, Journal of Analytical and Applied Pyrolysis, 85(1), 301-312.10.1016/j.jaap.2008.12.007Search in Google Scholar

18. Hanbaba P., van Heek K.H, Jüntgen H., Peters W. (1968), Non-isothermal kinetics of coal pyrolyse, Part II, Extension of the theory of the evolution of gas and experimental confirmation of bituminous coal, Fuel Chemistry, 49(12), 1968, 368-376.,Search in Google Scholar

19. Howard J.B. (1981), Fundamentals of Coal Pyrolysis and Hydropyrolysis, in Chemistry of Coal Utilization, (M.A.Elliott, Ed) Wiley & Sons.Search in Google Scholar

20. Koreňová Z., JumaM., Annus J., Markoš J., Jelemensky L. (2006), Kinetics of pyrolysis and properties of carbon black from a scrap tire, Chemical Papers, 60, 422–426.10.2478/s11696-006-0077-xSearch in Google Scholar

21. Lakshmanan C.C., White N. (1994), A new distributed activation energy model using Weibull distribution for the representation of complex kinetics, Energy Fuels, 8, 1158–1167.10.1021/ef00048a001Search in Google Scholar

22. Lapuerta, M., Hernández, J.J., Rodríguez, J. (2004), Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis, Biomass and Bioenergy, 27(4), 385–91.10.1016/j.biombioe.2003.11.010Open DOISearch in Google Scholar

23. Mysyk R.D., Whyman G.E., Savoskin M.V., Yaroshenko A.P. (2005), Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds, J. Therm. Anal and Cal., 79(3), 515-519.Search in Google Scholar

24. Niksa S., Lau, C-W. (1993), Global rates of devolatilization for various coal types Combust, Flame, 94, 293-30710.1016/0010-2180(93)90075-EOpen DOISearch in Google Scholar

25. Otero M., Calvo L.F., Gil M.V., García A.I., Morán A. (2008), Cocombustion Of Different Sewage Sludge and Coal, A non-isothermal thermogravimetric kinetic analysis, Bioresource Technology, 99, 6311-19.10.1016/j.biortech.2007.12.011Search in Google Scholar

26. Pitt G.J. (1962), The kinetics of the evolution of volatile products from coal, Fuel, 1, 267-274Search in Google Scholar

27. Pysiak J.J., Badwi Y.Al. (2004), Kinetic equations for thermal dissociation processes, 76, 521–52810.1023/B:JTAN.0000028030.49773.adSearch in Google Scholar

28. Quan C., Li A., Gao N. (2009), Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes, Waste Management, 29, 2353–2360.10.1016/j.wasman.2009.03.020Open DOISearch in Google Scholar

29. Robeva R., Davies R., Hodge T., Enyedi A. (2010), Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics, CBE Life Sciences Education (The American Society for Cell Biology), 9 (3), 227–240.10.1187/cbe.10-03-0019Search in Google Scholar

30. Skrdla P.J., Roberson R.T. (2005), Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies, applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals, J. Phys. Chem. B, 109, 10611-10619.10.1021/jp045268hSearch in Google Scholar

31. Solomon P.R., Hamblen D.G. (1983), Finding Order in Coal Pyrolysis Kinetics, Topical Report Submitted to the U.S. Department of Energy. Progr. Energy Combust. Sci., 9, 323-361.Search in Google Scholar

32. Suuberg E.M. (1983), Approximate solution technique for noniso-thermal, Gaussian distributed activation energy models, Combust. Flame, 50, 243-24510.1016/0010-2180(83)90066-4Open DOISearch in Google Scholar

33. Szczodrak J., Fiedurek J. (1996), Technology for conversion of lignocellulosic biomass to ethanol, Biomass and Bioenergy, 34, 367-375.10.1016/0961-9534(95)00114-XOpen DOISearch in Google Scholar

34. Teng H., Hsieh C.T. (1999), Influence of surface characteristics on liquid-phase adsorption of phenol by activated carbons prepared from bituminous coa, Ind. Engg. Chem. Res, 37, 3618-3624.Search in Google Scholar

35. Vand V. (1943), A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum, Proc. Phys. Soc., 55, 222-246Search in Google Scholar

36. White J.E., Catallo W.J., Legendre B.L. (2011), Biomass pyrolysis kinetics, A comparative critical review with relevant agriculture residue case studies, J. Anal. Appl. Pyrolysis, 91 (1), 1-33,10.1016/j.jaap.2011.01.004Search in Google Scholar

37. Zhu H.M., Yan J.H., Jiang X.G., Lai Y.E., Cen K.F(2009), Analysis Of Volatile Species Kinetics During Typical Medical Waste Materials Pyrolysis Using A Distributed Activation Energy Model, Journal of Hazardous Materials, 162(2), 646-651.10.1016/j.jhazmat.2008.05.07718579296Search in Google Scholar