Open Access

Experimental Investigation of an Automotive Magnetorheological Shock Absorber


Cite

1. Choi S.B., Han Y.M. (2012), Magnetorheological Fluid Technology Applications in Vehicle Systems, Padstow, United States: CRC Press Taylor & Francis Group.Search in Google Scholar

2. Choi S.B., Sung K.G. (2008), Vibration control of magnetorheological damper system subjected to parameter variations, International Journal of Vehicle Design, 45, 94–110.10.1504/IJVD.2008.017071Search in Google Scholar

3. El-Kafafy M., El-Demerdash S., Rabeih A. (2012), Automotive ride comfort control using MR fluid damper, Engineering, 4(4), 179–87.10.4236/eng.2012.44024Open DOISearch in Google Scholar

4. Gołdasz J., Dzierżek S. (2016), Parametric study on the performance of automotive MR shock absorbers, IOP Conf. Series: Materials Science and Engineering, 148, 012004.Search in Google Scholar

5. Gołdasz J., Sapiński B. (2015), Insight into Magnetorheological Shock Absorbers, Springer International Publishing AG Switzerland.10.1007/978-3-319-13233-4Search in Google Scholar

6. Koo J.H., Goncalves F.D., Ahmadian M. (2006), A comprehensive analysis of the time response of MR dampers, Smart Materials and Structures, 15, 351–358.10.1088/0964-1726/15/2/015Search in Google Scholar

7. Sapinski B., (2014), Energy harvesting MR linear damper: prototyping and testing, Smart Materials and Structures, 23, 035021.10.1088/0964-1726/23/3/035021Search in Google Scholar

8. Sapiński B., Jastrzębski Ł., Rosół M. (2012,) Power amplifier supporting MR fluid-based actuators, Proceedings of 13th International Carpathian Control Conference ICCC 2012, 612–616.10.1109/CarpathianCC.2012.6228719Search in Google Scholar

9. Sapiński B., Rosół M. (2007), MR damper performance for shock isolation, Journal of Theoretical and Applied Mechanics, 1(45), 133–146.Search in Google Scholar

10. Strecker Z., Mazurek I., Roupec J., Klapka M. (2015), Influence of MR damper response time on semiactive suspension control efficiency, Meccanica, 50, 1949–1959.10.1007/s11012-015-0139-7Search in Google Scholar

11. Strecker Z., Roupec J., Mazurek I., Klapka M. (2015), Limiting factors of the response time of the magnetorheological damper, International Journal of Applied Electromagnetics and Mechanics, 47(2), 541–550.10.3233/JAE-140006Search in Google Scholar

12. Strecker Z., Roupec J., Mazurek I., Machacek O., Kubik M., Klapka M. (2015), Design of magnetorheological damper with short time response, Journal of Intelligent Material Systems and Structures, Special Issue Article, 1–8.10.1177/1045389X15591381Search in Google Scholar

13. Sung K.G., Choi S.B.(2009) Vibration control of vehicle suspension featuring magnetorheological dampers: road test evaluation, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 19 (3), 235–242.Search in Google Scholar

14. Wang D.H., Bai X.X. (2013), A magnetorheological damper with an integrated self-powered displacement sensor, Smart Materials and Structures, 22, 075001.10.1088/0964-1726/22/7/075001Search in Google Scholar

15. Wu G., Feng Z., Zhang G., Hou Z., (2011), Experimental Study on Response Time of Magnetorheological Damper, 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 3968–3972.10.1109/AIMSEC.2011.6010142Search in Google Scholar

16. Xinchun G., Yonghu H., Yi R., Hui L., Jinping O., (2015), A novel self-powered MR damper: Theoretical and experimental analysis, Smart Materials and Structures, 24, 105033.10.1088/0964-1726/24/10/105033Search in Google Scholar

17. http://www.inteco.com.pl/Search in Google Scholar