Open Access

Comparison of Corrosion Resistance in Physiological Saline Solution of Two Austenitic Stainless Steels – 316LV and REX734


Cite

1. Baba H., Kodan T., Katada Y. (2002), Role of nitrogen on the corrosion behavior of austenitic stainless steels, Corrosion Science, 44, 2393–2407.10.1016/S0010-938X(02)00040-9Search in Google Scholar

2. Bayoumi F.M., Ghanem W.A. (2005), Effect of nitrogen on the corrosion behavior of austenitic stainless steel in chloride solution, Meterials Letters, 59(26), 3311-3314.10.1016/j.matlet.2005.05.063Search in Google Scholar

3. Burnat B., Błaszczyk T., Scholl H., Klimek L. (2008), The influence of TiO2 sol-gel layers obtained in different temperatures on corrosion properties of biomedical REX 734 alloy, Engineering of biomaterials, 77-88, 63-67.Search in Google Scholar

4. Burnat B., Dercz G., Błaszczyk T. (2014), Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol-gel layers, Journal Materials Science: Materials in Medicine, 25, 623-34.10.1007/s10856-013-5099-7Search in Google Scholar

5. Epstein S., Cross H.C., Groesbeck E.C., Wymore I. J. (1929), Observations on the iron-nitrogen system, Bureau of Standards journal of research, 6, 1005-1009.10.6028/jres.003.052Search in Google Scholar

6. Filemonowicz A.C., Clemens D., Quadaakkers W.J. (1995), The effect of high temperature exposure on the structure and oxidation behaviour of mechanically alloyed ferritic ODS alloys, Journal of Materials Processing and Technology, 53, 93-99.10.1016/0924-0136(95)01965-HSearch in Google Scholar

7. Ghanem W.A., Hussein W.A., Saeed S.N., Bader S.M., Abou Shahba R.M. (2015), Effect of nitrogen on the corrosion behavior of austenitic stainless steel in chloride solution, Modern Applied Science, 9(11), 119-13410.5539/mas.v9n11p119Search in Google Scholar

8. Gillett H.W. (1928), discussion of paper by M. A. Grossman on Oxygen Dissolved in Steel, and Its Influence on the Structure, presented at A. S. S. T. convention.Search in Google Scholar

9. Giordani E.J, Guimaraes V.A, Pinto T.B, Ferreira I. (2004), Effect of precipitates on the corrosion – fatigue crack initiation of ISO 5832-9 stainless steel biomaterial, International Journal of Fatigue, 26, 1129-1136.10.1016/j.ijfatigue.2004.03.002Search in Google Scholar

10. Giordano E.J., Allonso-Falleiros N., Ferreira I., Balancin O. (2010), Electrochemical behavior of two austenitic stainless steel biomaterial, Rem: Revista Escola de Minas, 63(1), 159-166.10.1590/S0370-44672010000100027Search in Google Scholar

11. Gotman I. (1997), Characteristic of metals used in implants, Journal of Endourology, 11(6), 383-389.10.1089/end.1997.11.3839440845Search in Google Scholar

12. Grabke H.J. (1996), The role of nitrogen in the corrosion of iron and steel, ISIJ International, 36(7), 777-786,10.2355/isijinternational.36.777Search in Google Scholar

13. IARC, (1996) Monographs on Evaluation of Carcinogenic Risk to Human: Surgical Implants and Other Foreign Bodies, Lyon, 74, 65.Search in Google Scholar

14. Itman Filho A., Vilarim Silva R., Wandercleiton da Silva Cardoso, Casteletti L.C (2014), Effect of niobium in the phase transformation and corrosion resistance of one austenitic-ferritic stainless steel, Materials Research Bulletin, 17(4), 801-806.10.1590/1516-1439.190113Search in Google Scholar

15. McCafferty E. (2010), Introduction to corrosion science, Springer, London.10.1007/978-1-4419-0455-3Search in Google Scholar

16. Oksiuta Z., Och E. (2013), Corrosion resistance of mechanically alloyed 14% Cr ODS ferritic steel, Acta Mechanica et Automatica, 7(1), 38-41.10.2478/ama-2013-0007Search in Google Scholar

17. Reclaru L., Lerf R., Eschles P.Y, Blatter A., Meyer A.M. (2003), Pitting, crevice and galvanic corrosion of REX734 stainless steel/CoCr orthopedic implant material, Biomaterials, 23, 3479-3485.10.1016/S0142-9612(02)00055-8Search in Google Scholar

18. Rondelli G., Vicentini B., Cigada A. (1997), Localized corrosion tests on austenitic stainless steels for biomedical applications, British Corrosion Journal, 32(3), 193-196.10.1179/bcj.1997.32.3.193Search in Google Scholar

19. Simmson J.W. (1996), Overview: high-nitrogen alloying of stainless steel, Materials Science and Engineering A, 207(I.2), 159-169.Search in Google Scholar

20. Sordi V.L., Bueno L.O. (2010), Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700°C, Journal of Physics: Conference Series 240, 012088.10.1088/1742-6596/240/1/012088Search in Google Scholar

21. Sumita M., Hanawa T., Teoh S.H. (2004), Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials—review, Materials Science & Engineering C, 24, 753-760.10.1016/j.msec.2004.08.030Search in Google Scholar

22. Szklarska-Śmiałowska Z. (2005), Pitting and Cervice Corrosion, NACE, Houston, Texas.Search in Google Scholar

23. Teoh S.H. (2000), Fatigue of biomaterials: a review, International Journal of Fatigue, 22, 825-837.10.1016/S0142-1123(00)00052-9Search in Google Scholar

24. Thomann U.I, Uggowitzer P. J. (2000), Wear-corrosion behavior of biocompatible austenitic stainless steel, Wear, 239, 48-58.10.1016/S0043-1648(99)00372-5Search in Google Scholar

25. Tverberg J. C. (2014) The role of alloying elements on the fabricability of austenitic stainless steel, P.E. Metals and Materials Consulting Engineers, Wisconsin.Search in Google Scholar

26. Uggowitzer P.J., Magdowski R., Speidel M.O. (1996), Nickel free high nitrogen austenitic steels, ISIJ International, 36, 91-8.10.2355/isijinternational.36.901Search in Google Scholar

27. Yang K, Ren Y. (2010), Nickel-free austenitic stainless steels for medical applications, Science and Technology of Advanced Materials, 11, 1-13.10.1088/1468-6996/11/1/014105509054727877320Search in Google Scholar

28. Yingli X., Zhangijan Z. (2013), Processing and structure of a Nitrogen Alloyed Oxide Dispersion Strengthened Austenitic Stainless Steel by mechanical alloying, Journal of Physics: Conference Series, 419.10.1088/1742-6596/419/1/012052Search in Google Scholar