Cite

1. Akdogan E., Adli M.A. (2011), The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot, Mechatronics, 21(3), 509-522.10.1016/j.mechatronics.2011.01.005Search in Google Scholar

2. Bae J., Tomizuka M. (2012), A gait rehabilitation strategy inspired by an iterative learning algorithm, Mechatronics, 22(2), 213-221.10.1016/j.mechatronics.2012.01.009Search in Google Scholar

3. Behrman A.L., Harkema S.J. (2000), Locomotor training after human spinal cord injury: a series of case studies, Physical Therapy, 80(7), 688-700.10.1093/ptj/80.7.688Search in Google Scholar

4. Botticello A.L., Rohrbach T., Cobbold N. (2014), Disability and the built environment: aninvestigation of community and neighborhood land uses and participation for physically impaired adults, Annals of Epidemiology, 24(7), 545-550.10.1016/j.annepidem.2014.05.003Search in Google Scholar

5. Boyd J.E., Little J.J. (2005), Biometric gait recognition, Advanced Studies in Biometrics, Springer, 3161, 19-42.10.1007/11493648_2Search in Google Scholar

6. Campa R., Kelly R., Santibanez V. (2004), Windows-based real-time control of direct-drive mechanisms: platform description and experiments, Mechatronics, 14(9), 1021-1036.10.1016/j.mechatronics.2004.04.004Search in Google Scholar

7. Cao J., Xie S.Q., Das R., Zhu G.L. (2014), Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects, Medical engineering & Physics, 36(12), 1555-1566.10.1016/j.medengphy.2014.08.005Search in Google Scholar

8. Cappozzo A., Della Croce U., Leardini A., Chiari L. (2005), Human movement analysis using stereophotogrammetry Part 1: theoretical background, Gait & Posture, 21(2), 186–196.10.1016/S0966-6362(04)00025-6Search in Google Scholar

9. Duda S., Gembalczyk G., Kciuk S., Gasiorek D. (2014), Mechatronic device to protect against falls during locomotor rehabilitation, Proceedings of the 3rd Joint International Conference on Multibody System Dynamics, Busan, 121-122.Search in Google Scholar

10. Duda S., Kawlewski K., Gembalczyk G. (2015), Concept of the System for Control over Keeping up the Movement of a Crane, Solid State Phenomena, 220, 339-344.10.4028/www.scientific.net/SSP.220-221.339Search in Google Scholar

11. Duda S., Michnik R., Kciuk S., Jurkojć J., Kawlewski K., Machoczek T. (2011), The conception of a mechatronic device for locomotor training, Aktualne Problemy Biomechaniki, 5, 29-36.Search in Google Scholar

12. Faust O., Yu W., Acharya U.R. (2015), The role of real-time in biomedical science: A meta-analysis on computational complexity, delay and speedup, Computers in Biology and Medicine, 58, 73-84.10.1016/j.compbiomed.2014.12.02425618217Search in Google Scholar

13. Gembalczyk G., Duda S. (2012), Design and validation of devices for measuring the force and the angle of inclination rope in crane, Modelowanie inżynierskie, 14(45), 32-38. [in Polish]Search in Google Scholar

14. Hesse S., Werner C. (2009), Connecting research to the needs of patients and clinicians, Brain Research Bulletin, 78, 26-34.10.1016/j.brainresbull.2008.06.00418601984Search in Google Scholar

15. Hidler J., Brennan D., Black I., Nichols D., Brady K. Nef T. (2011), ZeroG: Overground gait and balance training system, Journal of Rehabilitation Research & Development, 48(4), 287-298.10.1682/JRRD.2010.05.009821674384Search in Google Scholar

16. Hidler J.M., Wall A.E. (2005), Alteration in muscle activation patterns during robotic-assisted walking, Clinical Biomechanics, 20, 184-193.10.1016/j.clinbiomech.2004.09.01615621324Search in Google Scholar

17. Hussain S., Xie S.Q., Jamwal P.K. (2013), Control of a robotic orthosis for gait rehabilitation, Robotics and Autonomous Systems, 61(9), 911-919.10.1016/j.robot.2013.01.007Search in Google Scholar

18. Kaliński K.J., Buchholz C. (2015), Mechatronic design of strongly nonlinear systems on a basis of three wheeled mobile platform, Mechanical Systems and Signal Processing, 52-53, 700-721.10.1016/j.ymssp.2014.06.016Search in Google Scholar

19. Lunenburger L., Colombo G., Riener R., Dietz V. (2004), Biofeedback in gait training with the robotic orthosis Lokomat, Engineering in Medicine and Biology Society, 4888-4891.Search in Google Scholar

20. Mailah M., Jahanabadi H., Zain M.Z.M., Priyandoko G. (2009), Modelling and control of a human-like arm incorporating muscle models, Journal of Mechanical Engineering Science, 223(7), 1569-1577.10.1243/09544062JMES1289Search in Google Scholar

21. Marchal-Crespo L., Reinkensmeyer D.J. (2009), Review of control strategies for robotic movement training after neurologic injury, Journal of neuroengineering and rehabilitation, 6, 20.10.1186/1743-0003-6-20271033319531254Search in Google Scholar

22. Mulroy S.J., Klassen T., Gronley J.K., Eberly V.J., Brown D.A., Sullivan K.J. (2010), Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: an exploratory study, Physical Therapy, 90(2), 209-223.10.2522/ptj.2009014120022996Search in Google Scholar

23. Sawers A., Ting L.H. (2014), Perspectives on human-human sensorimotor interactions for the design of rehabilitation robots, Journal of neuroengineering and rehabilitation, 11, 142.10.1186/1743-0003-11-142419726125284060Search in Google Scholar

24. Sherafat S., Salavati M., Takamjani I.E., Akhbari B., Mohammadirad S., Mazaheri m., Negahban H. (2013), Intrasession and intersession reliability of postural control in participants with and without nonspecific low back pain using the Biodex Balance System, Journal of manipulative and physiological therapeutics, 36(2), 111-118.10.1016/j.jmpt.2012.12.00523499146Search in Google Scholar

25. Walker M.L., Ringleb S.I., Maihafer G.C., Walker R., Crouch J.R., Van Lunen B., Morrison S. (2010), Virtual reality–enhanced partial body weight–supported treadmill training poststroke: feasibility and effectiveness in 6 subjects. Archives of physical medicine and rehabilitation, 91(1), 115-122.10.1016/j.apmr.2009.09.00920103405Search in Google Scholar