Open Access

Siderophore: Structural And Functional Characterisation – A Comprehensive Review


Cite

ABDALLAH, M.A. 1991. Pyoverdines and pseudobactins. In WILKELMANN, G. (Ed) CRC handbook of microbial iron chelates. Boca Raton, Florida : CRC Press. pp 139–152.Search in Google Scholar

AHMED, E. – HOLMSTROM, S.J. 2014. Siderophores in environmental research: roles and applications. In Microbial Biotechnology, vol. 7, no. 3, pp. 196–208.Search in Google Scholar

HAJA, A.R. – MOHIDEENA, V. – THIRUMALAI ARASUC – NARAYANANB, K.R. – ZAHIR HUSSAIND, M.I. 2010. Bioremediation of heavy metal contaminated soil by the exigobacterium and accumulation of Cd, Ni, Zn and Cu from soil environment. In International Journal of Biological Technology, vol. 1, no. 2, pp. 94–101.Search in Google Scholar

ALEXANDER, D.B. – ZUBERERM, D.A. 1991. Use of chrome azurol ‘S regents to evaluate siderophore production by rhizosphere bacteria. In Biology and Fertility of Soils, vol. 12, pp. 39–45.Search in Google Scholar

ALI, S.S. – VIDHALE, N.N. 2013. Bacterial Siderophore and their Application: A review. In International Journal of Current Microbiology Applied Sciences, vol. 2, no. 12, pp. 303–31.Search in Google Scholar

ALI, T. – BYLUND, D. – ESSÉN, S.A. – LUNDSTRÖM, U.S. 2011. Liquid extraction of low molecular mass organic acids and hydroxamate siderophores from boreal forest soil. In Soil Biology and Biochemistry, vol. 43, pp. 2417–2422.Search in Google Scholar

ASAMUDO, N.U. – DABA, A.S. – EZERONYE, O.U. 2005 Bioremediation of textile effluent using Phanerochaete chrysosporium. In African Journal of Biotechnology, vol. 4, no. 13, pp. 1548–1553.Search in Google Scholar

BARONA, G.F. – LAUTRU, S. – FRANCOU, F.X. – PERNODET, P.L.J.L. – CHALLIS, G.L. 2006. Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomycesambofaciens ATCC 23877. In Microbiology, vol. 152, no. 11, pp. 3355–3366.Search in Google Scholar

BEARE, P.A. – FOR, R.J. – MARTIN, L.W. – LAMONT, I.L. 2003. Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. In Molecular Microbiology, vol.47, pp. 195–207. DOI: 10.1046/j.1365-2958.2003.03288.x.10.1046/j.1365-2958.2003.03288.xSearch in Google Scholar

BECKER, J.O. – MESSENS, E. – HEDGES, R.W. 1985. The influence of agrobactin on the uptake of ferric iron by plants. In FEMS microbiology letters, vol. 31, no. 3, pp. 171–175. DOI: 10.1111/j.1574-6968.1985.tb01145.x.10.1111/j.1574-6968.1985.tb01145.xSearch in Google Scholar

BERND, H. – REHM, A. 2008. Biotechnological relevance of Pseudomonads. In BERND, H. – REHM, A. (Eds) Pseudomonas. Model Organism, Pathogen, Cell Factory. Weinheim, Germany : Wiley-VCH Verlag GmbH and Co. KGaA. p. 377. ISBN 978-3-527-31914-5.Search in Google Scholar

BICKEL, H. – BOSSHARDT, R. – GÄUMANN, E. – REUSSER, P. – VISCHER, E. – VOSER, W. – WETTSTEIN, A. – ZÄHNER, H. 1960. Stoffwechselprodukte von Actinomyceten. Über die Isolierung and Characterisierung der Ferrioxamine A-F, neuer Wuchsstoffe der Sideramin-Gruppe. In Helvetica Chimica Acta, vol. 43, pp. 2118–2128. DOI: 10.1002/hlca.19600430731.10.1002/hlca.19600430731Search in Google Scholar

BOUBY, M. – BILLARD, I. – MACCORDICK, J. 1998. Complexation of Th (IV) with the siderophore pyoverdine A. In Journal of Alloys and Compounds, vol. 273, pp. 206–210.Search in Google Scholar

BSAT, N. – HERBIG, A. – CASILLAS-MARTINEZ, L. – SETLOW, P. – HELMANN, J.D. 1998. Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxidase regulon (PerR) repressors. In Molecular Microbiology, vol. 29, pp.189–198.Search in Google Scholar

BUSS, H.L. – LUTTGE, A. – BRANTLEY, S.L. 2007. Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution. In Chemical Geology, vol. 240, pp. 326–342. DOI:10.1016/j.chemgeo.2007.03.003.10.1016/j.chemgeo.2007.03.003Search in Google Scholar

BUYER J.S. – LORENZO, V.DE. – NEILANDS, J.B. 1991. Production of the siderophore aerobactin by a halophilic Pseudomonad. In Applied and Enviromental Microbiology, vol. 57, no. 8, pp. 2246–2250.Search in Google Scholar

BUYSENS, S. – HEUNGENS, K. – POPPE, J. – HOFTE, M. 1996. Involvement of Pyochelin and pioverdin in suppression of Pseudomonas aeruginosa 7NSK2. In Applied and Environmental Microbiology, vol. 62, no. 3, pp. 865–871.Search in Google Scholar

BUYSENS, S. – HEUNGENS, K. – POPPE, J. – HOFTE, M. 1996. Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. In Applied and Environmental Microbiology, vol. 62, no. 3, pp. 865–871.Search in Google Scholar

CASTIGNETTI, D. – SMARRELLI, J.R. 1986. Siderophores, the iron nutrition of plants, and nitrate reductase. In Federation of European Biochemical Societies (FEBS) Letter, vol. 209, pp. 147–151.Search in Google Scholar

CHALLIS, G.L. 2005. Widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. In ChemBioChem, vol.6, pp. 601–611. DOI: 10.1002/cbic.200400283.10.1002/cbic.200400283Search in Google Scholar

CHUA, A.C. – INGRAM, H.A. – RAYMOND, K.N. – BAKER, E. 2003. Multidentate pyridinones inhibit the metabolism of nontransferrin-bound iron by hepatocytes and hepatoma cells. In European Journal of Biochemistry, vol. 270, pp. 1689–1698.Search in Google Scholar

CLINE, G.R. – POWELL, P.E. – SZANISZLO, P.J. – REID, C.P.P. 1982. Comparison of abilities of hydroxamic, synthetic, and other natural organic acids to chelate iron and other irons in nutrient solution. In Soil Science Society of America Journal, vol. 46, pp. 1158–1164.Search in Google Scholar

CORBIN, J.L. – BULEN, W.A. 1969. The isolation and identification of 2,3-dihydroxybenzoic acid and 2-N,6-N-di(2,3-dihydroxy benzoy1)-L-lysine formed by iron-deficient Azotobacter. In Biochemistry, vol. 8, pp. 757–762.Search in Google Scholar

CORNISH, A.S. – PAGE, W.J. 1995. Production of the tri catecholate siderophore protochelin by Azotobacter-vinelandii. In BioMetals, vol. 8, pp. 332–338.Search in Google Scholar

CORNISH, A.S. – PAGE, W.J. 1998. The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. In Microbiology, vol. 144, no. 7, pp. 1747–1754.Search in Google Scholar

COULTON, J.W. – MASON, P. – CAMERON, D.R. – CARMEL, G. – JEAN, R. – RODE, H.N. 1986. Protein fusions of beta-galactosidase to the ferrichrome-iron receptor of Escherichia coli K-12. In Journal of Bacteriology, vol. 165, no. 1, pp. 181–92.Search in Google Scholar

CROSA, J.H. – WALSH, C.T. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. In Microbiology and Molecular Biology Reviews, vol. 66, pp. 223–249.Search in Google Scholar

CUNLIFFE, H.E. – MERRIMAN, T.R. – LAMONT, I.L. 1995. Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor. In Journal of Bacteriology, vol. 177, pp. 2744–2750.Search in Google Scholar

DE LORENZO, V. – NEILANDS, J.B. 1986. Characterization of iucA and iucC genes of the aerobactin system of plasmid ColV-K30 in Escherichia coli. In Journal of Bacteriology, vol. 167, pp. 350–355.Search in Google Scholar

DE VOSS, J.J. – RUTTER, K. – SCHROEDER, B.G. – BARRY III, C.E. 1999. Iron acquisition and metabolism by mycobacteria. In Journal of Bacteriology, vol. 181, pp. 4443–4451.Search in Google Scholar

DRECHSEL, H. – JUNG, G. – WINKELMANN, G. 1992. Stereochemical characterization of rhizoferrin and identification of its dehydration products. In Bio-Metals, vol. 5, pp.141–148.Search in Google Scholar

GARBISU, C. – ALKORTA, I. 1997. Bioremediation: principles and future. In Journal of Clean Technology, Environmental Toxicology and Occupational Medicine, vol. 6, no. 4, pp. 351–366.Search in Google Scholar

GARBISU, C. – GONZÁLEZ, S. – YANG, W.H. 1995. Physiological mechanisms regulating the conversion of selenite to elemental selenium by Bacillus subtilis. In BioFactors, vol. 5, no. 1, pp. 29–37.Search in Google Scholar

GREGORY, J.A. – LI, F. – TOMOSADA, L.M. – COX, C.J. 2012. Topol AB, Algae – produced Pfs25 elicits antibodies that inhibit malaria transmission. In PLoS ONE, vol. 7, no. 5, pp. 371–379. DOI:10.1371/journal.pone.0037179.10.1371/journal.pone.0037179Search in Google Scholar

GYSIN, J. – CRENN, Y. – PEREIRA, DA S. – LUIZ – BRETON, C. 1991. Siderophores as anti parasitic agents. US patent 5, pp.192–807.Search in Google Scholar

HALL, H.K. – FOSTER, J.W. 1996. The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. In Journal of Bacteriology, vol. 178, pp. 5683–5691.Search in Google Scholar

HAMDAN, H. – WELLER, D. – THOMASHOW, L. 1991. Relative importance of fluorescens siderophores and other factors in biological control of Gaeumannomyces graminis var. Tritici by Pseudomonas fluorescens 2-79 and M4-80R. In Applied and Environmental Microbiology, vol. 57, no. 11, pp. 3270–3277.Search in Google Scholar

HANS, P.F. – KRASTEL, P. – MULLER, J. – GEBHARDT, K. – ZEECK, A. 2001. Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. In FEMS Microbiology Letters, vol. 196, no. 2, pp. 147–151.Search in Google Scholar

HANTKE, K. 2001. Iron and metal regulation in bacteria. In Current Opinion in Microbiology, vol. 4, pp.172–177.Search in Google Scholar

HERSHKO, C. – LINK, G. – KONIJN, A.M. 2002. Cardioprotective effect of iron chelators. In HERSHKO, C. (Ed) Iron Chelation Theraphy. New York : Kluwer Academic / Plenum Publishers. pp. 77–89.10.1007/978-1-4615-0593-8_5Search in Google Scholar

HIDER, R.C. – KONG, X. 2010. Chemistry and biology of siderophores. In Natural Product Reports, vol. 27, no. 5, pp. 637–57.Search in Google Scholar

HOHNADEL, D. – MEYER, J.M. 1988. Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. In Journal of Bacteriology, vol. 170, pp. 4865–4873.Search in Google Scholar

HUSEN, E. 2003. Screening of soil bacteria for plant growth promotion activities in vitro. In Indonesian Journal of Agricultural Science, vol. 4, no. 1, pp. 27–31.Search in Google Scholar

ISHIMARU, Y. – TAKAHASHI, R. – BASHIR, K. – SHIMO, H. – SENOURA, T. – SUGIMOTO, K. – ONO, K. – YANO, M. – ISHIKAWA, S. – ARAO, T. – NAKANISHI, H. – NISHIZAWA, N.K. 2012. Characterizing the role of rice in manganese, iron and cadmium transport. In Scientific reports, vol. 2, pp. 286.Search in Google Scholar

JALAL, M.A.F. – HOSSAIN, M.B. – VANDERHELM, D. – SANDERSLOEHR, J. – ACTIS, L.A. – CROSA, J.H. 1989. Structure of anguibactin, a unique plasmid-related bacterial siderophore from the fish pathogen Vibrio anguillarum. In Journal of the American Chemical Society, vol. 111, pp. 292–296.Search in Google Scholar

JALAL, M.A.F. – VAN DER HELM, D. 1991. Isolation and spectroscopic identification of fungal siderophores. CRC Handbook of Microbial Iron Chelates Winkelmann G, CRC Press; Boca Raton, pp. 235–269.Search in Google Scholar

JOHNSON, J.R. – MOSELEY, S.L. – ROBERTS, P.L. – STAMM, W.E. 1988. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. In Infection and Immunity, vol. 56, no. 2, pp. 405–412.Search in Google Scholar

JOSHI, H. – DAVE, R. – VENUGOPALAN, V.P. 2014. Pumping iron to keep fit: modulation of siderophore secretion helps efficient aromatic utilization in Pseudomonas putida KT2440. In Microbiology, vol. 160, pp. 1393–400. DOI: 10.1099/mic.0.079277-0.10.1099/mic.0.079277-0Search in Google Scholar

KADI, N. – ARBACHE, S. – SONG, L. – OVES-COSTALES, D. – CHALLIS, G.L. 2008. Identification of a gene cluster that directs putrebactin biosynthesis in Shewanella species: PubC catalyzes cyclodimerization of N-hydroxy-Nsuccinylputrescine. In Journal of the American Chemical Society, vol. 130, pp. 10458–10459.Search in Google Scholar

KANNAHI, M. – SENBAGAM, N. 2014. Studies on siderophore production by microbial isolates obtained from rhizosphere soil and its antibacterial activity. In Journal of Chemical and Pharmaceutical Research, vol. 6, no. 4, pp.1142–1145.Search in Google Scholar

KLOEPPER, J.W. – LEONG, J. – TEINIZE, M. – SCHROTH, M.N. 1980. Enhanced plant growth by siderophores produced by plantgrowth promoting rhizobacteria. In Nature, vol. 286, pp. 885–886.Search in Google Scholar

KRAEMER, S.M. – CROWLEY, D. – KRETZSCHMAR, R. 2006. Siderophores in plant iron acquisition: Geochemical aspects. In Advances in Agronomy, vol. 91, pp. 1–46. DOI:10.1016/S0065-2113(06)91001-3.10.1016/S0065-2113(06)91001-3Search in Google Scholar

KRAEMER, S.M. 2004. Iron oxide dissolution and solubility in the presence of siderophores. In Aquatic Sciences, vol. 66, pp. 3–18. DOI: 10.1007/s00027-003-0690-5.10.1007/s00027-003-0690-5Search in Google Scholar

LAMONT, I.L. – MARTIN, L.W. 2003. Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. In Microbiology, vol. 149, no. 4, pp. 833–842.Search in Google Scholar

LANKFORD, C.E. 1973. Bacterial assimilation of iron. In Reviews in Microbiology, vol. 2, pp. 273–331. DOI: 10.3109/10408417309108388.10.3109/10408417309108388Search in Google Scholar

LAUTRU, S. – CHALLIS, G.L. 2004. Substrate recognition by nonribosomal peptide synthetase multi-enzymes. In Microbiology, vol. 150, pp. 1629–1636. DOI 10.1099/mic.0.26837-0.Search in Google Scholar

LEDYARD, K.M. – BUTTLER, A. 1997. Structure of putrebactin, a new dihydroxamate siderophore produced by Shewanella putrefaciens. In JBIC Journal of Biological Inorganic Chemistry, vol. 22, pp. 93–97. DOI: 10.1007/s007750050110.10.1007/s007750050110Search in Google Scholar

LEHOUX, D. 2000. Genomics of the 35-kb locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. In Federation of European Biochemical Societies, vol. 190, pp. 141–146.Search in Google Scholar

LOPER, J.E. – HENKEL, M.D. 1999. Utilization of heterologous siderophore enhances levels of iron available to Pseudomonas putida in rhizosphere. In Applied and Environmental Microbiology, vol. 65, no. 12, pp. 5357–5363.Search in Google Scholar

MAHESHWARI, D.K. 2011. Plant growth promoting rhizobacteria: fundamentals and applications. In MAHESHWARI, D.K. (Ed) Plant Growth and Health Promoting Bacteria. Berlin, Heidelberg : Springer-Verlag. pp. 21–42. ISBN 978-3-642-13612-2.Search in Google Scholar

MANWAR, A.V. – KHANDELWAL, S.R. – CHAUDHARI, B.L. – KOTHARI, R.M. – CHINCHOLKAR, S.B. 2001. Generic technology for assured biocontrol of groundnut infections leading to its yield improvement. In Chemical Weekly, vol. XL VI, no. 26, pp. 157–158.Search in Google Scholar

MARSCHNER, H. – ROMHELD, V. – KISSEL, M. 1986. Different strategies in higher plants in mobilization and uptake of iron. In Journal of Plant Nutrition, vol. 9, pp. 695–713. DOI: 10.1080/01904168609363475.10.1080/01904168609363475Search in Google Scholar

McGRATh, S.P. – CHAUDRI, A.M. – GILLER, K.E. 1995. Long-term effects of metals in sewage sluge on soils, microorganisms and plants. In Journal of Industrial, vol. 14, no. 2, pp. 94–104. DOI: 10.1007/BF01569890.10.1007/BF01569890Search in Google Scholar

McMORRAN, B.J. – KUMARA, H.M.C. – SULLIVAN, K.S. – LAMONT, I.L. 2001. Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonasaeruginosa. In Microbiology, vol. 147, pp. 1517–1524.Search in Google Scholar

McMORRAN, B.J. – MERRIMAN, M.E. – ROMBEL, I.T. – LAMONT, L.T. 1996. Characterisation of the pvdE gene which is required for pyoverdine synthesisin Pseudomonas aeruginosa. In Gene, vol. 176, pp. 55–59.Search in Google Scholar

MENEELY, K.M. – LAMB, A.L. 2007. Biochemical characterization of an FAD-Dependent monooxygenase, the ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism. In Biochemistry, vol. 46, pp. 11930–11937.Search in Google Scholar

MERRIMAN, T.R. – MERRIMAN, M.E. – LAMONT, I.L. 1995. Nucleotidesequence of pvdD, a pyoverdine bio-synthetic gene from Pseudomonas aeruginosa: PvdD has similarity to peptide synthetases. In Journal of Bacteriology, vol. 177, pp. 252–258.Search in Google Scholar

MEYER, J.M. 2000. Pyoverdines: Pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. In Archives of Microbiology, vol. 174, no. 3, pp. 135–142.Search in Google Scholar

MEYRIER, A. 1999. Urinary tract infection. In SCHRIER, R.W. – COHEN, A.H. – GLASSOCK, R.J. – GRÜNFELD, JP. (Eds) Atlas of diseases of the kidney 2. Oxford : Blackwell Science. ISBN 0-632-04387-3.Search in Google Scholar

MINO, Y. – ISHIDA, T. – OTA, N. – INOUE, M. – NOMOTO, K. – TAKEMOTO, T. – TANAKA, H. – SUGIURA, Y. 1983. Mugineic acid-iron (III) complex:characterization and implication for absorption and transport of iron in gramineous plants. In Journal of the American Chemical Society, vol. 105, pp. 4671–4676. DOI: 10.1021/ja00352a024.10.1021/ja00352a024Search in Google Scholar

MOSSIALOS, D. – OCHSNER, U. – BAYSSE, C. – CHABLAIN, P. – PIRNAY, J.P. – KOEDAM, N. 2002. Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. In Molecular Microbiology, vol. 45, no. 6, pp.1673–85. DOI: 10.1046/j.1365-2958.2002.03120.x.10.1046/j.1365-2958.2002.03120.xSearch in Google Scholar

MUNEES, A. – MULUGETA, K. 2014. Mechanisms and applications of plant growth promoting rhizobacteria. In Current perspective Journal of King Saud University – Science, vol. 26, pp. 1–20.Search in Google Scholar

MUNZINGER, M. – TARAZ, K. – BUDZIKIEWICZ, H. 1999. SS-rhizoferrin (enantio-rhizoferrin) – a siderophore of Ralstonia (Pseudomonas) pickettii DSM 6297 – the optical antipode of R, R-rhizoferrin isolated from fungi. In BioMetals, vol. 12, pp. 189–193.Search in Google Scholar

NADIA, K. – CHALLIS, G.L. 2009. Complex enzymes in microbial natural product biosynthesis. In Methods in Enzymology, vol. 458, pp. 431–435.Search in Google Scholar

NEILANDS, J.B. 1952. A crystalline organo-iron pigment from a rust fungus (Ustilagosphaerogena). In Journal of the American Chemical Society, vol. 74, no. 19, pp. 4846–4847.Search in Google Scholar

NEILANDS, J.B. 1981. Iron absorption and transport in microorganisms. In Annual Review of Nutrition, vol. 1, pp. 27–46. DOI: 10.1146/annurev.nu.01.070181.000331.10.1146/annurev.nu.01.070181.000331Search in Google Scholar

NEILANDS, J.B. 1982. Microbial iron transport comounds. In Annual Review of Microbiology, vol. 36, pp. 285–309. DOI: 10.1146/annurev.mi.36.100182.001441.10.1146/annurev.mi.36.100182.001441Search in Google Scholar

NEILANDS, J.B. 1995. Siderophores: Structure and function of microbial iron transport compounds. In The Journal of Biological Chemistry, vol. 270, no. 45, pp. 26723–26726. DOI:10.1074/jbc.270.45.26723.10.1074/jbc.270.45.26723Search in Google Scholar

O’BRIEN, I.G. – COX, G.B. – GIBSON, F. 1970. Biologically active compounds containing 2, 3-dihydroxybenzoic acid and serine formed by Escherichia coli. In Biochimica et Biophysica Acta (BBA), vol. 201, no. 3, pp. 453–60. DOI:10.1016/0304-4165(70)90165-0.10.1016/0304-4165(70)90165-0Search in Google Scholar

O’SULLIVAN, D.J. – O’GARA, F. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. In Microbiological Reviews, vol. 56, no. 4, pp. 662–676. DOI: 0146-0749/92/040662-15$02.00/0.Search in Google Scholar

PAGE, W. – TIGERSTROM, V.M. 1988. Aminochelin, a catecholamine siderophore produced by Azotobacter-vinelandii. In Journal of General Microbiology, vol. 134, pp. 453–460. DOI: 10.1099/00221287-134-2-453.10.1099/00221287-134-2-453Search in Google Scholar

PIETRANGELO, A. 2002. Mechanism of iron toxicity. In HERSHKO, C. (Ed) Iron Chelation Theraphy. New York : Kluwer Academic / Plenum Publishers, vol. 509, pp. 19–43.Search in Google Scholar

POLLACK, J.R. – NEILANDS, J.B. 1970. Iron transport in Salmonella typhimurium: Mutants blocked in the Biosynthesis of Enterobactin. In Journal of Bacteriology, vol. 104, no. 2, pp. 635–639.Search in Google Scholar

POOLE, K. – NESHAT, S. – KREBES, K. – HEINRICHS, D.E. 1993. Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa. In Journal of Bacteriology, vol. 175, no. 15, pp. 4597–4604.Search in Google Scholar

PRESSLER, U. – STAUDENMAIER, H. – ZIMMERMANN, L. – BRAUN, V. 1988. Genetics of the iron dicitrate transport system of Escherichia coli. In Journal of Bacteriology, vol. 170, pp. 2716–2724.Search in Google Scholar

RAVEL, J. – CORNELIS, P. 2003. Genomics of pyoverdine – mediated iron uptake in pseudomonads. In Trends in Microbiology, vol. 11, pp. 195–200. DOI: 10.1111/j.1365-2958.2008.06223.x.10.1111/j.1365-2958.2008.06223.xSearch in Google Scholar

RAYMOND, K.N. – EMILY, A.D. – SANGGOO, S.K. 2003. Enterobactin: An archetype for microbial iron transport. In Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3584–3588. DOI:10.1073/pnas.0630018100.10.1073/pnas.0630018100Search in Google Scholar

REICHARD, P.U. – KRAEMER, S.M. – FRAZIER, S.W. – KRETZSCHMAR, R. 2005. Goethite dissolution in the presence of phytosiderophores: rates, mechanisms, and the synergistic effect of oxalate. In Plant Soil, vol. 276, pp. 115–132.Search in Google Scholar

RENSHAW, J.C. – ROBSON, G.D. – TRINCI, A.P.J. – WIEBE, M.G. – LIVENS, F.R. – COLLISON, D. – TAYLOR, R.J. 2002. Fungal siderophores: structures, functions and applications. In Mycological Research, vol. 106, pp. 1123–1142.Search in Google Scholar

ROMBEL, I.T. – LAMONT, I.L. 1992. DNA homology between siderophore genes from fluorescent pseudomonads. In Journal of General Microbiology, vol. 138, no. 1, pp. 181–187. DOI: 10.1099/00221287-138-1-181.10.1099/00221287-138-1-181Search in Google Scholar

RUGGIERO, C.E. – NEU, M.P. – MATONIC, J.H. – REILLY, S.D. 2000. Interactions of Pu with desferrioxamine siderophores can affect bioavailability and mobility. In Actinide Research Quarterly, 2nd/3rd Quarter, pp. 16–18.Search in Google Scholar

SCHALK, I.J. – HANNAUER, M. – BRAUD, A. 2011. Minireview new roles for bacterial. In Enviromental Microbiology, vol. 13, no. 11, pp. 2844–54.Search in Google Scholar

SCHALK, I.J. – HENNARD, C. – DUGAVE, C. – POOLE, K. – ABDALLAH, M.A. – PATTUS, F. 2001. Iron-free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa: a new mechanism for membrane iron transport. In Molecular Microbiology, vol. 39, no. 2, pp. 351–60. DOI: 10.1046/j.1365-2958.2001.02207.x.10.1046/j.1365-2958.2001.02207.xSearch in Google Scholar

SCHWYN, B. – NEILANDS, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. In Analytical Biochemistry, vol. 160, no. 1, pp. 47–56. DOI:10.1016/0003-2697(87)90612-9.10.1016/0003-2697(87)90612-9Search in Google Scholar

SEUK, C. – PAULITA, T. – BAKER, R. 1988. Attributes associate with increased bio-control activity of fluorescent Pseudomonads. In Journal of Plant Pathology, vol. 4, no. 3, pp. 218–225.Search in Google Scholar

SHARMA, A. – JOHRI, B.N. – SHARMA, A.K. – GLICK, B.R. 2003. Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). In Soil Biology and Biochemistry, vol. 35, no. 7, pp. 887–894.Search in Google Scholar

SHIRVANI, M. – NOURBAKHSH, F. 2010. Desferrioxamine-B adsorption to and iron dissolution from palygorskite and sepiolite. In Applied Clay Science, vol. 48, pp. 393.Search in Google Scholar

SIMON, D. – LYTTON, B.M. – LZAC, D. – GLICKSTEIN, H. – JACQUELINE, L. – SHANZER, A. – CABANTCHIK, Z.L. 1993. Mode of action of iron (III) chelators as antimalarials. In Membrane Permeation Properties and Cytotoxic Activity Blood, vol. 81, no. 1, pp. 214–221.Search in Google Scholar

STEPHAN, U.W. – SCHMIDKE, I.V. – STEPHAN, W. – SCHOLZ, G. 1996. The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. In Biometals, vol. 9, pp. 84–90.Search in Google Scholar

STEPHEN, J. – LANE, P.S. – MARSHALL, R.J. – UPTON, C. 1998. Isolation and characterization of carboxy mycobactins as the second extracellular siderophores in Mycobacterium smegmatis. In Biometals, vol. 11, no. 1, pp. 13–20.Search in Google Scholar

STINTZI, A. – BARNES, C. – XU, J. – KENNETH, N. 2000. Raymond microbial iron transport via a siderophore shuttle: A membrane ion transport paradigm. In PNAS (Proceedings of the National Academy of Science), vol. 97, no. 20, pp. 10691–10696, DOI:10.1073/pnas.200318797.10.1073/pnas.2003187972708410995480Search in Google Scholar

TAKAGI, S. 1976. Naturally occurring iron-chelating compounds in oat and rice-root washings: activity measurement and preliminary characterizations. In Soil Science and Plant Nutrition, vol. 22, pp. 423–433.Search in Google Scholar

THIEKEN, A. – WINKELMANN, G. 1992. Rhizoferrin: a complexone type siderophore of the Mucorales and entomophthorales (Zygomycetes). In Federation of European Biochemical Societies Microbiol Letters vol. 73, pp. 37–41.Search in Google Scholar

VAN DER LELIE, D. – CORBISIER, P. – DIELS, L. 1999. The role of bacteria in the phytoremediation of heavy metals. In TERRY, N. – BANUELOS, E. (Eds) Phytoremediation of Contaminated Soil and Water. Lewis Publisher, USA. pp. 265–281. ISBN 1-56670-450-2.Search in Google Scholar

VANDENBERGH, P.A. – GONZALEZ, C.F. 1984. Method for protecting the growth of plants employing mutant siderophore producing strains of Pseudomonas putida, United States Patent Number: 4, 479, 936.Search in Google Scholar

VANSUYT, G. – ROBIN, A. – BRIAT, J.F. – CURIE, C. – LEMANCEAU, P. 2007. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. In Molecular Plant-Microbe Interactions, vol. 20, no. 4, pp. 441–447.Search in Google Scholar

VARMA, A. – PODILA, G.K. 2005. Siderophore their biotechnological application. In Biotechnological Applications of Microbes, pp. 177–199.Search in Google Scholar

VERMA, V.C. – SINGH, S.K. – PRAKASH, S. 2011. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. In Journal of Basic Microbiology, vol. 51, pp. 550–556. DOI: 10.1002/jobm.201000155.10.1002/jobm.20100015521656792Search in Google Scholar

VISCA, P. – CIERVO, A. – ORSI, N. 1994. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdine biosynthetic enzyme L-ornithine N5-oxygenase in Pseudomonas aeruginosa. In Journal of Bacteriology, vol. 176, pp. 1128–1140.Search in Google Scholar

VON GUNTEN, H.R. – BENES, P. 1995. Speciation of radionuclides in the environment. In Radiochimica Acta, vol. 69, pp. 1–29.Search in Google Scholar

WALSH, C.T. – JUN, L. – RUSNAK, F. – SAKAITANI, M. 1990. Molecular studies on enzymes in chorismate metabolism and the enterobactin biosynthetic pathway. In Chemical Reviews, vol. 90, no. 7, pp. 1105–1129.Search in Google Scholar

WANG, P. – MORI, T. – KOMORI, K. – SASATSU, M. – TODA, K. – OHTAKE, H. 1989. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. In Applied and Environmental Microbiology, vol. 55, no. 7, pp. 1665–1669.Search in Google Scholar

WANG, P. – MORI, T. – KOMORI, K. – SASATSU, M. – TODA, K. – OHTAKE, H. 1989. Isolation and characterization of an enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. In Applied and Environmental Microbiology, vol. 55, no. 7, pp. 1665–1669.Search in Google Scholar

WANG, Q. – XIONG, D. – ZHAO, P. – YU, X. – TU, B. – WANG, G. 2011. Effect of applying an arsenic-resistant and plant growth–promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. In Journal of Applied Microbiology, vol. 111, pp. 1065–1074.Search in Google Scholar

WARD, T.R. – REAS, L. – SERGE, P. – PAREL, J.E. – PHILIPP, G. – PETER, B. – CHRIS, O. 1999. An iron-based molecular redox switch as a model for iron release from enterobactin via the salicylate binding mode. In Inorganic Chemistry, vol. 38, no. 22, pp. 5007–5017.Search in Google Scholar

WENDENBAUM, S. – DEMANGE, P. – DELL, A. – MEYER, J.M. – ABDALLAH, M.A. 1983. The structure of pyoverdine Pa, the siderophore of Pseudomonas aeruginosa. In Tetrahedron Letters, vol. 24, no. 44, pp. 4877–4880.Search in Google Scholar

WHO Model List of Essential Medicines. World Health Organization. October, 2013. Retrieved 22 April 2014.Search in Google Scholar

WINKELMANN, G. 1991. Specificity of iron transport in bacteria and fungi. In WINKELMANN, G. (Ed). Handbook of microbial iron chelates. Boca Raton : Fla: CRC Press. pp. 65–106.Search in Google Scholar

WITTMANN, S. – HEINISCH, L. – SCHERLITZ-HOFMANN, I.N.A. – STOIBER, T. – DOROTHE, A.F. – MÖLLMANN, U. 2001. Catecholates and mixed catecholate hydroxamates as artificial siderophores for mycobacteria. In Biometals, vol. 17, pp. 53–64.Search in Google Scholar

YADAV, S. – KAUSHIK, R. – SAXENA, A.K. – ARORA, D.K. 2011. Diversity and phylogeny of plant growth promoting bacilli from moderately acidic soil. In Journal of Basic Microbiology, vol. 51, pp. 98–106.Search in Google Scholar

ZAHNER, H. – KELLER-SCHIERLEIN, W. – HÜTTER, R. – HESS-LESINGER, K. – DEER, A. 1963. Stoffwechselprodukte von Mikroorganismen. Sideramineaus Aspergillacaeen. In Archives of Microbiology, vol.45, vol. 119–135.Search in Google Scholar

eISSN:
1338-4376
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other